![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmg | GIF version |
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.) |
Ref | Expression |
---|---|
prmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snmg 3710 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) | |
2 | orc 712 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
3 | velsn 3609 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | vex 2740 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 4 | elpr 3613 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
6 | 2, 3, 5 | 3imtr4i 201 | . . 3 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵}) |
7 | 6 | eximi 1600 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 708 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {csn 3592 {cpr 3593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2739 df-un 3133 df-sn 3598 df-pr 3599 |
This theorem is referenced by: prm 3715 opm 4234 onintexmid 4572 subrgin 13325 |
Copyright terms: Public domain | W3C validator |