ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmg GIF version

Theorem prmg 3754
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
prmg (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem prmg
StepHypRef Expression
1 snmg 3751 . 2 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
2 orc 714 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐴𝑥 = 𝐵))
3 velsn 3650 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 vex 2775 . . . . 5 𝑥 ∈ V
54elpr 3654 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
62, 3, 53imtr4i 201 . . 3 (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵})
76eximi 1623 . 2 (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
81, 7syl 14 1 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710   = wceq 1373  wex 1515  wcel 2176  {csn 3633  {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  prm  3756  opm  4278  onintexmid  4621  subrngin  13975  subrgin  14006  lssincl  14147
  Copyright terms: Public domain W3C validator