ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmg GIF version

Theorem prmg 3697
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
prmg (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem prmg
StepHypRef Expression
1 snmg 3694 . 2 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
2 orc 702 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐴𝑥 = 𝐵))
3 velsn 3593 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 vex 2729 . . . . 5 𝑥 ∈ V
54elpr 3597 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
62, 3, 53imtr4i 200 . . 3 (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵})
76eximi 1588 . 2 (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
81, 7syl 14 1 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 698   = wceq 1343  wex 1480  wcel 2136  {csn 3576  {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  prm  3699  opm  4212  onintexmid  4550
  Copyright terms: Public domain W3C validator