ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmg GIF version

Theorem prmg 3739
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
prmg (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem prmg
StepHypRef Expression
1 snmg 3736 . 2 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴})
2 orc 713 . . . 4 (𝑥 = 𝐴 → (𝑥 = 𝐴𝑥 = 𝐵))
3 velsn 3635 . . . 4 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 vex 2763 . . . . 5 𝑥 ∈ V
54elpr 3639 . . . 4 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
62, 3, 53imtr4i 201 . . 3 (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵})
76eximi 1611 . 2 (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
81, 7syl 14 1 (𝐴𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wo 709   = wceq 1364  wex 1503  wcel 2164  {csn 3618  {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  prm  3741  opm  4263  onintexmid  4605  subrngin  13709  subrgin  13740  lssincl  13881
  Copyright terms: Public domain W3C validator