| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmg | GIF version | ||
| Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| Ref | Expression |
|---|---|
| prmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snmg 3761 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) | |
| 2 | orc 714 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
| 3 | velsn 3660 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | vex 2779 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 4 | elpr 3664 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 6 | 2, 3, 5 | 3imtr4i 201 | . . 3 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵}) |
| 7 | 6 | eximi 1624 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 710 = wceq 1373 ∃wex 1516 ∈ wcel 2178 {csn 3643 {cpr 3644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: prm 3767 opm 4296 onintexmid 4639 subrngin 14090 subrgin 14121 lssincl 14262 |
| Copyright terms: Public domain | W3C validator |