| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prmg | GIF version | ||
| Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.) |
| Ref | Expression |
|---|---|
| prmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snmg 3740 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) | |
| 2 | orc 713 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
| 3 | velsn 3639 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 4 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 4 | elpr 3643 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 6 | 2, 3, 5 | 3imtr4i 201 | . . 3 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵}) |
| 7 | 6 | eximi 1614 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
| 8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {csn 3622 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: prm 3745 opm 4267 onintexmid 4609 subrngin 13769 subrgin 13800 lssincl 13941 |
| Copyright terms: Public domain | W3C validator |