![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmg | GIF version |
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.) |
Ref | Expression |
---|---|
prmg | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snmg 3558 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴}) | |
2 | orc 668 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) | |
3 | velsn 3463 | . . . 4 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | vex 2622 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 4 | elpr 3467 | . . . 4 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
6 | 2, 3, 5 | 3imtr4i 199 | . . 3 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ {𝐴, 𝐵}) |
7 | 6 | eximi 1536 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝐴} → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
8 | 1, 7 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 664 = wceq 1289 ∃wex 1426 ∈ wcel 1438 {csn 3446 {cpr 3447 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 df-sn 3452 df-pr 3453 |
This theorem is referenced by: prm 3563 opm 4061 onintexmid 4388 |
Copyright terms: Public domain | W3C validator |