ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinin2m GIF version

Theorem iinin2m 3954
Description: Indexed intersection of intersection. Compare to Theorem "Distributive laws" in [Enderton] p. 30. (Contributed by Jim Kingdon, 17-Aug-2018.)
Assertion
Ref Expression
iinin2m (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iinin2m
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.28mv 3515 . . . 4 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 𝑦𝐶)))
2 elin 3318 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32ralbii 2483 . . . 4 (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 vex 2740 . . . . . 6 𝑦 ∈ V
5 eliin 3891 . . . . . 6 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶))
64, 5ax-mp 5 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∀𝑥𝐴 𝑦𝐶)
76anbi2i 457 . . . 4 ((𝑦𝐵𝑦 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ∀𝑥𝐴 𝑦𝐶))
81, 3, 73bitr4g 223 . . 3 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶)))
9 eliin 3891 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶)))
104, 9ax-mp 5 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∀𝑥𝐴 𝑦 ∈ (𝐵𝐶))
11 elin 3318 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
128, 10, 113bitr4g 223 . 2 (∃𝑥 𝑥𝐴 → (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶)))
1312eqrdv 2175 1 (∃𝑥 𝑥𝐴 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  wral 2455  Vcvv 2737  cin 3128   ciin 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-in 3135  df-iin 3889
This theorem is referenced by:  iinin1m  3955
  Copyright terms: Public domain W3C validator