Step | Hyp | Ref
| Expression |
1 | | relxp 4713 |
. . . . . 6
⊢ Rel
(𝐶 × 𝐵) |
2 | 1 | rgenw 2521 |
. . . . 5
⊢
∀𝑥 ∈
𝐴 Rel (𝐶 × 𝐵) |
3 | | r19.2m 3495 |
. . . . 5
⊢
((∃𝑦 𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥 ∈ 𝐴 Rel (𝐶 × 𝐵)) |
4 | 2, 3 | mpan2 422 |
. . . 4
⊢
(∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 Rel (𝐶 × 𝐵)) |
5 | | reliin 4726 |
. . . 4
⊢
(∃𝑥 ∈
𝐴 Rel (𝐶 × 𝐵) → Rel ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) |
6 | 4, 5 | syl 14 |
. . 3
⊢
(∃𝑦 𝑦 ∈ 𝐴 → Rel ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) |
7 | | relxp 4713 |
. . 3
⊢ Rel
(𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) |
8 | 6, 7 | jctil 310 |
. 2
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (Rel (𝐶 × ∩
𝑥 ∈ 𝐴 𝐵) ∧ Rel ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
9 | | eleq1w 2227 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
10 | 9 | cbvexv 1906 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 ↔ ∃𝑦 𝑦 ∈ 𝐴) |
11 | | r19.28mv 3501 |
. . . . . . 7
⊢
(∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑤 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵) ↔ (𝑤 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵))) |
12 | 10, 11 | sylbir 134 |
. . . . . 6
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝑤 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵) ↔ (𝑤 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵))) |
13 | 12 | bicomd 140 |
. . . . 5
⊢
(∃𝑦 𝑦 ∈ 𝐴 → ((𝑤 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑤 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵))) |
14 | | eliin 3871 |
. . . . . . 7
⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
15 | 14 | elv 2730 |
. . . . . 6
⊢ (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
16 | 15 | anbi2i 453 |
. . . . 5
⊢ ((𝑤 ∈ 𝐶 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 𝐵) ↔ (𝑤 ∈ 𝐶 ∧ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
17 | | opelxp 4634 |
. . . . . 6
⊢
(〈𝑤, 𝑧〉 ∈ (𝐶 × 𝐵) ↔ (𝑤 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵)) |
18 | 17 | ralbii 2472 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 〈𝑤, 𝑧〉 ∈ (𝐶 × 𝐵) ↔ ∀𝑥 ∈ 𝐴 (𝑤 ∈ 𝐶 ∧ 𝑧 ∈ 𝐵)) |
19 | 13, 16, 18 | 3bitr4g 222 |
. . . 4
⊢
(∃𝑦 𝑦 ∈ 𝐴 → ((𝑤 ∈ 𝐶 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 𝐵) ↔ ∀𝑥 ∈ 𝐴 〈𝑤, 𝑧〉 ∈ (𝐶 × 𝐵))) |
20 | | opelxp 4634 |
. . . 4
⊢
(〈𝑤, 𝑧〉 ∈ (𝐶 × ∩
𝑥 ∈ 𝐴 𝐵) ↔ (𝑤 ∈ 𝐶 ∧ 𝑧 ∈ ∩
𝑥 ∈ 𝐴 𝐵)) |
21 | | vex 2729 |
. . . . . 6
⊢ 𝑤 ∈ V |
22 | | vex 2729 |
. . . . . 6
⊢ 𝑧 ∈ V |
23 | 21, 22 | opex 4207 |
. . . . 5
⊢
〈𝑤, 𝑧〉 ∈ V |
24 | | eliin 3871 |
. . . . 5
⊢
(〈𝑤, 𝑧〉 ∈ V →
(〈𝑤, 𝑧〉 ∈ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵) ↔ ∀𝑥 ∈ 𝐴 〈𝑤, 𝑧〉 ∈ (𝐶 × 𝐵))) |
25 | 23, 24 | ax-mp 5 |
. . . 4
⊢
(〈𝑤, 𝑧〉 ∈ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵) ↔ ∀𝑥 ∈ 𝐴 〈𝑤, 𝑧〉 ∈ (𝐶 × 𝐵)) |
26 | 19, 20, 25 | 3bitr4g 222 |
. . 3
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (〈𝑤, 𝑧〉 ∈ (𝐶 × ∩
𝑥 ∈ 𝐴 𝐵) ↔ 〈𝑤, 𝑧〉 ∈ ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵))) |
27 | 26 | eqrelrdv2 4703 |
. 2
⊢ (((Rel
(𝐶 × ∩ 𝑥 ∈ 𝐴 𝐵) ∧ Rel ∩ 𝑥 ∈ 𝐴 (𝐶 × 𝐵)) ∧ ∃𝑦 𝑦 ∈ 𝐴) → (𝐶 × ∩
𝑥 ∈ 𝐴 𝐵) = ∩
𝑥 ∈ 𝐴 (𝐶 × 𝐵)) |
28 | 8, 27 | mpancom 419 |
1
⊢
(∃𝑦 𝑦 ∈ 𝐴 → (𝐶 × ∩
𝑥 ∈ 𝐴 𝐵) = ∩
𝑥 ∈ 𝐴 (𝐶 × 𝐵)) |