ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiindim GIF version

Theorem xpiindim 4856
Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpiindim (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem xpiindim
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4825 . . . . . 6 Rel (𝐶 × 𝐵)
21rgenw 2585 . . . . 5 𝑥𝐴 Rel (𝐶 × 𝐵)
3 r19.2m 3578 . . . . 5 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
42, 3mpan2 425 . . . 4 (∃𝑦 𝑦𝐴 → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
5 reliin 4838 . . . 4 (∃𝑥𝐴 Rel (𝐶 × 𝐵) → Rel 𝑥𝐴 (𝐶 × 𝐵))
64, 5syl 14 . . 3 (∃𝑦 𝑦𝐴 → Rel 𝑥𝐴 (𝐶 × 𝐵))
7 relxp 4825 . . 3 Rel (𝐶 × 𝑥𝐴 𝐵)
86, 7jctil 312 . 2 (∃𝑦 𝑦𝐴 → (Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)))
9 eleq1w 2290 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
109cbvexv 1965 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
11 r19.28mv 3584 . . . . . . 7 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
1210, 11sylbir 135 . . . . . 6 (∃𝑦 𝑦𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
1312bicomd 141 . . . . 5 (∃𝑦 𝑦𝐴 → ((𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵)))
14 eliin 3969 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1514elv 2803 . . . . . 6 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
1615anbi2i 457 . . . . 5 ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵))
17 opelxp 4746 . . . . . 6 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ (𝑤𝐶𝑧𝐵))
1817ralbii 2536 . . . . 5 (∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵))
1913, 16, 183bitr4g 223 . . . 4 (∃𝑦 𝑦𝐴 → ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
20 opelxp 4746 . . . 4 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ (𝑤𝐶𝑧 𝑥𝐴 𝐵))
21 vex 2802 . . . . . 6 𝑤 ∈ V
22 vex 2802 . . . . . 6 𝑧 ∈ V
2321, 22opex 4314 . . . . 5 𝑤, 𝑧⟩ ∈ V
24 eliin 3969 . . . . 5 (⟨𝑤, 𝑧⟩ ∈ V → (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
2523, 24ax-mp 5 . . . 4 (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵))
2619, 20, 253bitr4g 223 . . 3 (∃𝑦 𝑦𝐴 → (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵)))
2726eqrelrdv2 4815 . 2 (((Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)) ∧ ∃𝑦 𝑦𝐴) → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
288, 27mpancom 422 1 (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  Vcvv 2799  cop 3669   ciin 3965   × cxp 4714  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-iin 3967  df-opab 4145  df-xp 4722  df-rel 4723
This theorem is referenced by:  xpriindim  4857
  Copyright terms: Public domain W3C validator