ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiindim GIF version

Theorem xpiindim 4741
Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpiindim (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem xpiindim
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4713 . . . . . 6 Rel (𝐶 × 𝐵)
21rgenw 2521 . . . . 5 𝑥𝐴 Rel (𝐶 × 𝐵)
3 r19.2m 3495 . . . . 5 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
42, 3mpan2 422 . . . 4 (∃𝑦 𝑦𝐴 → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
5 reliin 4726 . . . 4 (∃𝑥𝐴 Rel (𝐶 × 𝐵) → Rel 𝑥𝐴 (𝐶 × 𝐵))
64, 5syl 14 . . 3 (∃𝑦 𝑦𝐴 → Rel 𝑥𝐴 (𝐶 × 𝐵))
7 relxp 4713 . . 3 Rel (𝐶 × 𝑥𝐴 𝐵)
86, 7jctil 310 . 2 (∃𝑦 𝑦𝐴 → (Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)))
9 eleq1w 2227 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
109cbvexv 1906 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
11 r19.28mv 3501 . . . . . . 7 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
1210, 11sylbir 134 . . . . . 6 (∃𝑦 𝑦𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
1312bicomd 140 . . . . 5 (∃𝑦 𝑦𝐴 → ((𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵)))
14 eliin 3871 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1514elv 2730 . . . . . 6 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
1615anbi2i 453 . . . . 5 ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵))
17 opelxp 4634 . . . . . 6 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ (𝑤𝐶𝑧𝐵))
1817ralbii 2472 . . . . 5 (∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵))
1913, 16, 183bitr4g 222 . . . 4 (∃𝑦 𝑦𝐴 → ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
20 opelxp 4634 . . . 4 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ (𝑤𝐶𝑧 𝑥𝐴 𝐵))
21 vex 2729 . . . . . 6 𝑤 ∈ V
22 vex 2729 . . . . . 6 𝑧 ∈ V
2321, 22opex 4207 . . . . 5 𝑤, 𝑧⟩ ∈ V
24 eliin 3871 . . . . 5 (⟨𝑤, 𝑧⟩ ∈ V → (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
2523, 24ax-mp 5 . . . 4 (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵))
2619, 20, 253bitr4g 222 . . 3 (∃𝑦 𝑦𝐴 → (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵)))
2726eqrelrdv2 4703 . 2 (((Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)) ∧ ∃𝑦 𝑦𝐴) → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
288, 27mpancom 419 1 (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  cop 3579   ciin 3867   × cxp 4602  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-iin 3869  df-opab 4044  df-xp 4610  df-rel 4611
This theorem is referenced by:  xpriindim  4742
  Copyright terms: Public domain W3C validator