ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpiindim GIF version

Theorem xpiindim 4757
Description: Distributive law for cross product over indexed intersection. (Contributed by Jim Kingdon, 7-Dec-2018.)
Assertion
Ref Expression
xpiindim (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐶,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem xpiindim
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4729 . . . . . 6 Rel (𝐶 × 𝐵)
21rgenw 2530 . . . . 5 𝑥𝐴 Rel (𝐶 × 𝐵)
3 r19.2m 3507 . . . . 5 ((∃𝑦 𝑦𝐴 ∧ ∀𝑥𝐴 Rel (𝐶 × 𝐵)) → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
42, 3mpan2 425 . . . 4 (∃𝑦 𝑦𝐴 → ∃𝑥𝐴 Rel (𝐶 × 𝐵))
5 reliin 4742 . . . 4 (∃𝑥𝐴 Rel (𝐶 × 𝐵) → Rel 𝑥𝐴 (𝐶 × 𝐵))
64, 5syl 14 . . 3 (∃𝑦 𝑦𝐴 → Rel 𝑥𝐴 (𝐶 × 𝐵))
7 relxp 4729 . . 3 Rel (𝐶 × 𝑥𝐴 𝐵)
86, 7jctil 312 . 2 (∃𝑦 𝑦𝐴 → (Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)))
9 eleq1w 2236 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
109cbvexv 1916 . . . . . . 7 (∃𝑥 𝑥𝐴 ↔ ∃𝑦 𝑦𝐴)
11 r19.28mv 3513 . . . . . . 7 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
1210, 11sylbir 135 . . . . . 6 (∃𝑦 𝑦𝐴 → (∀𝑥𝐴 (𝑤𝐶𝑧𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵)))
1312bicomd 141 . . . . 5 (∃𝑦 𝑦𝐴 → ((𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵)))
14 eliin 3887 . . . . . . 7 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
1514elv 2739 . . . . . 6 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
1615anbi2i 457 . . . . 5 ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ (𝑤𝐶 ∧ ∀𝑥𝐴 𝑧𝐵))
17 opelxp 4650 . . . . . 6 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ (𝑤𝐶𝑧𝐵))
1817ralbii 2481 . . . . 5 (∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵) ↔ ∀𝑥𝐴 (𝑤𝐶𝑧𝐵))
1913, 16, 183bitr4g 223 . . . 4 (∃𝑦 𝑦𝐴 → ((𝑤𝐶𝑧 𝑥𝐴 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
20 opelxp 4650 . . . 4 (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ (𝑤𝐶𝑧 𝑥𝐴 𝐵))
21 vex 2738 . . . . . 6 𝑤 ∈ V
22 vex 2738 . . . . . 6 𝑧 ∈ V
2321, 22opex 4223 . . . . 5 𝑤, 𝑧⟩ ∈ V
24 eliin 3887 . . . . 5 (⟨𝑤, 𝑧⟩ ∈ V → (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵)))
2523, 24ax-mp 5 . . . 4 (⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵) ↔ ∀𝑥𝐴𝑤, 𝑧⟩ ∈ (𝐶 × 𝐵))
2619, 20, 253bitr4g 223 . . 3 (∃𝑦 𝑦𝐴 → (⟨𝑤, 𝑧⟩ ∈ (𝐶 × 𝑥𝐴 𝐵) ↔ ⟨𝑤, 𝑧⟩ ∈ 𝑥𝐴 (𝐶 × 𝐵)))
2726eqrelrdv2 4719 . 2 (((Rel (𝐶 × 𝑥𝐴 𝐵) ∧ Rel 𝑥𝐴 (𝐶 × 𝐵)) ∧ ∃𝑦 𝑦𝐴) → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
288, 27mpancom 422 1 (∃𝑦 𝑦𝐴 → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1490  wcel 2146  wral 2453  wrex 2454  Vcvv 2735  cop 3592   ciin 3883   × cxp 4618  Rel wrel 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-iin 3885  df-opab 4060  df-xp 4626  df-rel 4627
This theorem is referenced by:  xpriindim  4758
  Copyright terms: Public domain W3C validator