ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpiinm GIF version

Theorem ixpiinm 6618
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpiinm (∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝑧,𝐵
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem ixpiinm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2200 . . . 4 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
21cbvexv 1890 . . 3 (∃𝑦 𝑦𝐵 ↔ ∃𝑧 𝑧𝐵)
3 r19.28mv 3455 . . . . 5 (∃𝑦 𝑦𝐵 → (∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
4 eliin 3818 . . . . . . 7 (𝑓 ∈ V → (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑓X𝑥𝐴 𝐶))
54elv 2690 . . . . . 6 (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑓X𝑥𝐴 𝐶)
6 vex 2689 . . . . . . . 8 𝑓 ∈ V
76elixp 6599 . . . . . . 7 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
87ralbii 2441 . . . . . 6 (∀𝑦𝐵 𝑓X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
95, 8bitri 183 . . . . 5 (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
106elixp 6599 . . . . . 6 (𝑓X𝑥𝐴 𝑦𝐵 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶))
11 vex 2689 . . . . . . . . . . 11 𝑥 ∈ V
126, 11fvex 5441 . . . . . . . . . 10 (𝑓𝑥) ∈ V
13 eliin 3818 . . . . . . . . . 10 ((𝑓𝑥) ∈ V → ((𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 (𝑓𝑥) ∈ 𝐶))
1412, 13ax-mp 5 . . . . . . . . 9 ((𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 (𝑓𝑥) ∈ 𝐶)
1514ralbii 2441 . . . . . . . 8 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑓𝑥) ∈ 𝐶)
16 ralcom 2594 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑓𝑥) ∈ 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)
1715, 16bitri 183 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)
1817anbi2i 452 . . . . . 6 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
1910, 18bitri 183 . . . . 5 (𝑓X𝑥𝐴 𝑦𝐵 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
203, 9, 193bitr4g 222 . . . 4 (∃𝑦 𝑦𝐵 → (𝑓 𝑦𝐵 X𝑥𝐴 𝐶𝑓X𝑥𝐴 𝑦𝐵 𝐶))
2120eqrdv 2137 . . 3 (∃𝑦 𝑦𝐵 𝑦𝐵 X𝑥𝐴 𝐶 = X𝑥𝐴 𝑦𝐵 𝐶)
222, 21sylbir 134 . 2 (∃𝑧 𝑧𝐵 𝑦𝐵 X𝑥𝐴 𝐶 = X𝑥𝐴 𝑦𝐵 𝐶)
2322eqcomd 2145 1 (∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wral 2416  Vcvv 2686   ciin 3814   Fn wfn 5118  cfv 5123  Xcixp 6592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iin 3816  df-br 3930  df-opab 3990  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-ixp 6593
This theorem is referenced by:  ixpintm  6619
  Copyright terms: Public domain W3C validator