ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpiinm GIF version

Theorem ixpiinm 6834
Description: The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.) (Revised by Jim Kingdon, 15-Feb-2023.)
Assertion
Ref Expression
ixpiinm (∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝑧,𝐵
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem ixpiinm
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eleq1w 2268 . . . 4 (𝑦 = 𝑧 → (𝑦𝐵𝑧𝐵))
21cbvexv 1943 . . 3 (∃𝑦 𝑦𝐵 ↔ ∃𝑧 𝑧𝐵)
3 r19.28mv 3561 . . . . 5 (∃𝑦 𝑦𝐵 → (∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
4 eliin 3946 . . . . . . 7 (𝑓 ∈ V → (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑓X𝑥𝐴 𝐶))
54elv 2780 . . . . . 6 (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 𝑓X𝑥𝐴 𝐶)
6 vex 2779 . . . . . . . 8 𝑓 ∈ V
76elixp 6815 . . . . . . 7 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
87ralbii 2514 . . . . . 6 (∀𝑦𝐵 𝑓X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
95, 8bitri 184 . . . . 5 (𝑓 𝑦𝐵 X𝑥𝐴 𝐶 ↔ ∀𝑦𝐵 (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
106elixp 6815 . . . . . 6 (𝑓X𝑥𝐴 𝑦𝐵 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶))
11 vex 2779 . . . . . . . . . . 11 𝑥 ∈ V
126, 11fvex 5619 . . . . . . . . . 10 (𝑓𝑥) ∈ V
13 eliin 3946 . . . . . . . . . 10 ((𝑓𝑥) ∈ V → ((𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 (𝑓𝑥) ∈ 𝐶))
1412, 13ax-mp 5 . . . . . . . . 9 ((𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵 (𝑓𝑥) ∈ 𝐶)
1514ralbii 2514 . . . . . . . 8 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑓𝑥) ∈ 𝐶)
16 ralcom 2671 . . . . . . . 8 (∀𝑥𝐴𝑦𝐵 (𝑓𝑥) ∈ 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)
1715, 16bitri 184 . . . . . . 7 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶 ↔ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶)
1817anbi2i 457 . . . . . 6 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑦𝐵 𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
1910, 18bitri 184 . . . . 5 (𝑓X𝑥𝐴 𝑦𝐵 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐵𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
203, 9, 193bitr4g 223 . . . 4 (∃𝑦 𝑦𝐵 → (𝑓 𝑦𝐵 X𝑥𝐴 𝐶𝑓X𝑥𝐴 𝑦𝐵 𝐶))
2120eqrdv 2205 . . 3 (∃𝑦 𝑦𝐵 𝑦𝐵 X𝑥𝐴 𝐶 = X𝑥𝐴 𝑦𝐵 𝐶)
222, 21sylbir 135 . 2 (∃𝑧 𝑧𝐵 𝑦𝐵 X𝑥𝐴 𝐶 = X𝑥𝐴 𝑦𝐵 𝐶)
2322eqcomd 2213 1 (∃𝑧 𝑧𝐵X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wex 1516  wcel 2178  wral 2486  Vcvv 2776   ciin 3942   Fn wfn 5285  cfv 5290  Xcixp 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iin 3944  df-br 4060  df-opab 4122  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-ixp 6809
This theorem is referenced by:  ixpintm  6835
  Copyright terms: Public domain W3C validator