| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbidva | GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| rabbidva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbidva | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbidva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | ralrimiva 2579 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒)) |
| 3 | rabbi 2684 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | |
| 4 | 2, 3 | sylib 122 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ∀wral 2484 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-ral 2489 df-rab 2493 |
| This theorem is referenced by: rabbidv 2761 rabeqbidva 2768 rabbi2dva 3381 rabxfrd 4516 onsucmin 4555 seinxp 4746 fniniseg2 5702 fnniniseg2 5703 f1oresrab 5745 dfinfre 9029 minmax 11541 xrminmax 11576 iooinsup 11588 gcdass 12336 lcmass 12407 pcneg 12648 bdbl 14975 xmetxpbl 14980 lgsquadlem1 15554 lgsquadlem2 15555 2lgslem1a 15565 2omap 15932 |
| Copyright terms: Public domain | W3C validator |