ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva GIF version

Theorem rabbidva 2759
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
Hypothesis
Ref Expression
rabbidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbidva (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidva
StepHypRef Expression
1 rabbidva.1 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ralrimiva 2578 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 rabbi 2683 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
42, 3sylib 122 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wral 2483  {crab 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-ral 2488  df-rab 2492
This theorem is referenced by:  rabbidv  2760  rabeqbidva  2767  rabbi2dva  3380  rabxfrd  4515  onsucmin  4554  seinxp  4745  fniniseg2  5701  fnniniseg2  5702  f1oresrab  5744  dfinfre  9028  minmax  11483  xrminmax  11518  iooinsup  11530  gcdass  12278  lcmass  12349  pcneg  12590  bdbl  14917  xmetxpbl  14922  lgsquadlem1  15496  lgsquadlem2  15497  2lgslem1a  15507  2omap  15865
  Copyright terms: Public domain W3C validator