ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva GIF version

Theorem rabbidva 2787
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
Hypothesis
Ref Expression
rabbidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbidva (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidva
StepHypRef Expression
1 rabbidva.1 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ralrimiva 2603 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 rabbi 2709 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
42, 3sylib 122 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  {crab 2512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-ral 2513  df-rab 2517
This theorem is referenced by:  rabbidv  2788  rabeqbidva  2795  rabbi2dva  3412  rabxfrd  4559  onsucmin  4598  seinxp  4789  fniniseg2  5756  fnniniseg2  5757  f1oresrab  5799  dfinfre  9099  minmax  11736  xrminmax  11771  iooinsup  11783  gcdass  12531  lcmass  12602  pcneg  12843  bdbl  15171  xmetxpbl  15176  lgsquadlem1  15750  lgsquadlem2  15751  2lgslem1a  15761  2omap  16318  pw1map  16320
  Copyright terms: Public domain W3C validator