ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva GIF version

Theorem rabbidva 2760
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
Hypothesis
Ref Expression
rabbidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbidva (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidva
StepHypRef Expression
1 rabbidva.1 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ralrimiva 2579 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 rabbi 2684 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
42, 3sylib 122 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  {crab 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-ral 2489  df-rab 2493
This theorem is referenced by:  rabbidv  2761  rabeqbidva  2768  rabbi2dva  3381  rabxfrd  4516  onsucmin  4555  seinxp  4746  fniniseg2  5702  fnniniseg2  5703  f1oresrab  5745  dfinfre  9029  minmax  11541  xrminmax  11576  iooinsup  11588  gcdass  12336  lcmass  12407  pcneg  12648  bdbl  14975  xmetxpbl  14980  lgsquadlem1  15554  lgsquadlem2  15555  2lgslem1a  15565  2omap  15932
  Copyright terms: Public domain W3C validator