ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbidva GIF version

Theorem rabbidva 2751
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by NM, 28-Nov-2003.)
Hypothesis
Ref Expression
rabbidva.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbidva (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rabbidva
StepHypRef Expression
1 rabbidva.1 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21ralrimiva 2570 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
3 rabbi 2675 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
42, 3sylib 122 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-ral 2480  df-rab 2484
This theorem is referenced by:  rabbidv  2752  rabeqbidva  2759  rabbi2dva  3372  rabxfrd  4505  onsucmin  4544  seinxp  4735  fniniseg2  5687  fnniniseg2  5688  f1oresrab  5730  dfinfre  9000  minmax  11412  xrminmax  11447  iooinsup  11459  gcdass  12207  lcmass  12278  pcneg  12519  bdbl  14823  xmetxpbl  14828  lgsquadlem1  15402  lgsquadlem2  15403  2lgslem1a  15413  2omap  15726
  Copyright terms: Public domain W3C validator