Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabn0m | GIF version |
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) |
Ref | Expression |
---|---|
rabn0m | ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | rabid 2645 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1598 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | nfv 1521 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} | |
5 | df-rab 2457 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | eleq2i 2237 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
7 | nfsab1 2160 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
8 | 6, 7 | nfxfr 1467 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} |
9 | eleq1 2233 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) | |
10 | 4, 8, 9 | cbvex 1749 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
11 | 1, 3, 10 | 3bitr2ri 208 | 1 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1485 ∈ wcel 2141 {cab 2156 ∃wrex 2449 {crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-rex 2454 df-rab 2457 |
This theorem is referenced by: exss 4212 cc4f 7231 cc4n 7233 nnwosdc 11994 |
Copyright terms: Public domain | W3C validator |