| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabn0m | GIF version | ||
| Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) |
| Ref | Expression |
|---|---|
| rabn0m | ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2490 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | rabid 2682 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 3 | 2 | exbii 1628 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| 4 | nfv 1551 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} | |
| 5 | df-rab 2493 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 6 | 5 | eleq2i 2272 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 7 | nfsab1 2195 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 8 | 6, 7 | nfxfr 1497 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} |
| 9 | eleq1 2268 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) | |
| 10 | 4, 8, 9 | cbvex 1779 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
| 11 | 1, 3, 10 | 3bitr2ri 209 | 1 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1515 ∈ wcel 2176 {cab 2191 ∃wrex 2485 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-rex 2490 df-rab 2493 |
| This theorem is referenced by: exss 4271 cc4f 7381 cc4n 7383 nnwosdc 12360 lspf 14151 |
| Copyright terms: Public domain | W3C validator |