ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0m GIF version

Theorem rabn0m 3293
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.)
Assertion
Ref Expression
rabn0m (∃𝑦 𝑦 ∈ {𝑥𝐴𝜑} ↔ ∃𝑥𝐴 𝜑)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rabn0m
StepHypRef Expression
1 df-rex 2359 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
2 rabid 2535 . . 3 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
32exbii 1537 . 2 (∃𝑥 𝑥 ∈ {𝑥𝐴𝜑} ↔ ∃𝑥(𝑥𝐴𝜑))
4 nfv 1462 . . 3 𝑦 𝑥 ∈ {𝑥𝐴𝜑}
5 df-rab 2362 . . . . 5 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65eleq2i 2149 . . . 4 (𝑦 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥𝐴𝜑)})
7 nfsab1 2073 . . . 4 𝑥 𝑦 ∈ {𝑥 ∣ (𝑥𝐴𝜑)}
86, 7nfxfr 1404 . . 3 𝑥 𝑦 ∈ {𝑥𝐴𝜑}
9 eleq1 2145 . . 3 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
104, 8, 9cbvex 1681 . 2 (∃𝑥 𝑥 ∈ {𝑥𝐴𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥𝐴𝜑})
111, 3, 103bitr2ri 207 1 (∃𝑦 𝑦 ∈ {𝑥𝐴𝜑} ↔ ∃𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wex 1422  wcel 1434  {cab 2069  wrex 2354  {crab 2357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-rex 2359  df-rab 2362
This theorem is referenced by:  exss  4018
  Copyright terms: Public domain W3C validator