![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabn0m | GIF version |
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) |
Ref | Expression |
---|---|
rabn0m | ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2376 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | rabid 2556 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1548 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | nfv 1473 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} | |
5 | df-rab 2379 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | eleq2i 2161 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
7 | nfsab1 2085 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
8 | 6, 7 | nfxfr 1415 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} |
9 | eleq1 2157 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) | |
10 | 4, 8, 9 | cbvex 1693 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
11 | 1, 3, 10 | 3bitr2ri 208 | 1 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1433 ∈ wcel 1445 {cab 2081 ∃wrex 2371 {crab 2374 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-11 1449 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-rex 2376 df-rab 2379 |
This theorem is referenced by: exss 4078 |
Copyright terms: Public domain | W3C validator |