Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabn0m | GIF version |
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) |
Ref | Expression |
---|---|
rabn0m | ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | rabid 2641 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 2 | exbii 1593 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
4 | nfv 1516 | . . 3 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} | |
5 | df-rab 2453 | . . . . 5 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | eleq2i 2233 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
7 | nfsab1 2155 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
8 | 6, 7 | nfxfr 1462 | . . 3 ⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} |
9 | eleq1 2229 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑})) | |
10 | 4, 8, 9 | cbvex 1744 | . 2 ⊢ (∃𝑥 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
11 | 1, 3, 10 | 3bitr2ri 208 | 1 ⊢ (∃𝑦 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∃wrex 2445 {crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-rex 2450 df-rab 2453 |
This theorem is referenced by: exss 4205 cc4f 7210 cc4n 7212 nnwosdc 11972 |
Copyright terms: Public domain | W3C validator |