Proof of Theorem ffvresb
| Step | Hyp | Ref
 | Expression | 
| 1 |   | fdm 5413 | 
. . . . . 6
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → dom (𝐹 ↾ 𝐴) = 𝐴) | 
| 2 |   | dmres 4967 | 
. . . . . . 7
⊢ dom
(𝐹 ↾ 𝐴) = (𝐴 ∩ dom 𝐹) | 
| 3 |   | inss2 3384 | 
. . . . . . 7
⊢ (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹 | 
| 4 | 2, 3 | eqsstri 3215 | 
. . . . . 6
⊢ dom
(𝐹 ↾ 𝐴) ⊆ dom 𝐹 | 
| 5 | 1, 4 | eqsstrrdi 3236 | 
. . . . 5
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → 𝐴 ⊆ dom 𝐹) | 
| 6 | 5 | sselda 3183 | 
. . . 4
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ dom 𝐹) | 
| 7 |   | fvres 5582 | 
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) | 
| 8 | 7 | adantl 277 | 
. . . . 5
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) = (𝐹‘𝑥)) | 
| 9 |   | ffvelcdm 5695 | 
. . . . 5
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) | 
| 10 | 8, 9 | eqeltrrd 2274 | 
. . . 4
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | 
| 11 | 6, 10 | jca 306 | 
. . 3
⊢ (((𝐹 ↾ 𝐴):𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) | 
| 12 | 11 | ralrimiva 2570 | 
. 2
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) | 
| 13 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝑥 ∈ dom 𝐹) | 
| 14 | 13 | ralimi 2560 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ 𝐴 𝑥 ∈ dom 𝐹) | 
| 15 |   | dfss3 3173 | 
. . . . . 6
⊢ (𝐴 ⊆ dom 𝐹 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ dom 𝐹) | 
| 16 | 14, 15 | sylibr 134 | 
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → 𝐴 ⊆ dom 𝐹) | 
| 17 |   | funfn 5288 | 
. . . . . 6
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) | 
| 18 |   | fnssres 5371 | 
. . . . . 6
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴) Fn 𝐴) | 
| 19 | 17, 18 | sylanb 284 | 
. . . . 5
⊢ ((Fun
𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴) Fn 𝐴) | 
| 20 | 16, 19 | sylan2 286 | 
. . . 4
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴) Fn 𝐴) | 
| 21 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝐹‘𝑥) ∈ 𝐵) | 
| 22 | 7 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → (((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) | 
| 23 | 21, 22 | imbitrrid 156 | 
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵)) | 
| 24 | 23 | ralimia 2558 | 
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → ∀𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) | 
| 25 | 24 | adantl 277 | 
. . . . 5
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → ∀𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) | 
| 26 |   | fnfvrnss 5722 | 
. . . . 5
⊢ (((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((𝐹 ↾ 𝐴)‘𝑥) ∈ 𝐵) → ran (𝐹 ↾ 𝐴) ⊆ 𝐵) | 
| 27 | 20, 25, 26 | syl2anc 411 | 
. . . 4
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → ran (𝐹 ↾ 𝐴) ⊆ 𝐵) | 
| 28 |   | df-f 5262 | 
. . . 4
⊢ ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) ⊆ 𝐵)) | 
| 29 | 20, 27, 28 | sylanbrc 417 | 
. . 3
⊢ ((Fun
𝐹 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵)) → (𝐹 ↾ 𝐴):𝐴⟶𝐵) | 
| 30 | 29 | ex 115 | 
. 2
⊢ (Fun
𝐹 → (∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝐹 ↾ 𝐴):𝐴⟶𝐵)) | 
| 31 | 12, 30 | impbid2 143 | 
1
⊢ (Fun
𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝐵))) |