ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvresb GIF version

Theorem ffvresb 5648
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
ffvresb (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffvresb
StepHypRef Expression
1 fdm 5343 . . . . . 6 ((𝐹𝐴):𝐴𝐵 → dom (𝐹𝐴) = 𝐴)
2 dmres 4905 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3 inss2 3343 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
42, 3eqsstri 3174 . . . . . 6 dom (𝐹𝐴) ⊆ dom 𝐹
51, 4eqsstrrdi 3195 . . . . 5 ((𝐹𝐴):𝐴𝐵𝐴 ⊆ dom 𝐹)
65sselda 3142 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
7 fvres 5510 . . . . . 6 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
87adantl 275 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
9 ffvelrn 5618 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) ∈ 𝐵)
108, 9eqeltrrd 2244 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
116, 10jca 304 . . 3 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
1211ralrimiva 2539 . 2 ((𝐹𝐴):𝐴𝐵 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
13 simpl 108 . . . . . . 7 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥 ∈ dom 𝐹)
1413ralimi 2529 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
15 dfss3 3132 . . . . . 6 (𝐴 ⊆ dom 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
1614, 15sylibr 133 . . . . 5 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝐴 ⊆ dom 𝐹)
17 funfn 5218 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
18 fnssres 5301 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
1917, 18sylanb 282 . . . . 5 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
2016, 19sylan2 284 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) Fn 𝐴)
21 simpr 109 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) ∈ 𝐵)
227eleq1d 2235 . . . . . . . 8 (𝑥𝐴 → (((𝐹𝐴)‘𝑥) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2321, 22syl5ibr 155 . . . . . . 7 (𝑥𝐴 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐹𝐴)‘𝑥) ∈ 𝐵))
2423ralimia 2527 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
2524adantl 275 . . . . 5 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
26 fnfvrnss 5645 . . . . 5 (((𝐹𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵) → ran (𝐹𝐴) ⊆ 𝐵)
2720, 25, 26syl2anc 409 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ran (𝐹𝐴) ⊆ 𝐵)
28 df-f 5192 . . . 4 ((𝐹𝐴):𝐴𝐵 ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) ⊆ 𝐵))
2920, 27, 28sylanbrc 414 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴):𝐴𝐵)
3029ex 114 . 2 (Fun 𝐹 → (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴):𝐴𝐵))
3112, 30impbid2 142 1 (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  cin 3115  wss 3116  dom cdm 4604  ran crn 4605  cres 4606  Fun wfun 5182   Fn wfn 5183  wf 5184  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  resflem  5649  tfrcl  6332  frecfcllem  6372  lmbr2  12854  lmff  12889
  Copyright terms: Public domain W3C validator