ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvresb GIF version

Theorem ffvresb 5797
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
ffvresb (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffvresb
StepHypRef Expression
1 fdm 5478 . . . . . 6 ((𝐹𝐴):𝐴𝐵 → dom (𝐹𝐴) = 𝐴)
2 dmres 5025 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3 inss2 3425 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
42, 3eqsstri 3256 . . . . . 6 dom (𝐹𝐴) ⊆ dom 𝐹
51, 4eqsstrrdi 3277 . . . . 5 ((𝐹𝐴):𝐴𝐵𝐴 ⊆ dom 𝐹)
65sselda 3224 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
7 fvres 5650 . . . . . 6 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
87adantl 277 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
9 ffvelcdm 5767 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) ∈ 𝐵)
108, 9eqeltrrd 2307 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
116, 10jca 306 . . 3 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
1211ralrimiva 2603 . 2 ((𝐹𝐴):𝐴𝐵 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
13 simpl 109 . . . . . . 7 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥 ∈ dom 𝐹)
1413ralimi 2593 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
15 dfss3 3213 . . . . . 6 (𝐴 ⊆ dom 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
1614, 15sylibr 134 . . . . 5 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝐴 ⊆ dom 𝐹)
17 funfn 5347 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
18 fnssres 5435 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
1917, 18sylanb 284 . . . . 5 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
2016, 19sylan2 286 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) Fn 𝐴)
21 simpr 110 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) ∈ 𝐵)
227eleq1d 2298 . . . . . . . 8 (𝑥𝐴 → (((𝐹𝐴)‘𝑥) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2321, 22imbitrrid 156 . . . . . . 7 (𝑥𝐴 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐹𝐴)‘𝑥) ∈ 𝐵))
2423ralimia 2591 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
2524adantl 277 . . . . 5 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
26 fnfvrnss 5794 . . . . 5 (((𝐹𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵) → ran (𝐹𝐴) ⊆ 𝐵)
2720, 25, 26syl2anc 411 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ran (𝐹𝐴) ⊆ 𝐵)
28 df-f 5321 . . . 4 ((𝐹𝐴):𝐴𝐵 ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) ⊆ 𝐵))
2920, 27, 28sylanbrc 417 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴):𝐴𝐵)
3029ex 115 . 2 (Fun 𝐹 → (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴):𝐴𝐵))
3112, 30impbid2 143 1 (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  cin 3196  wss 3197  dom cdm 4718  ran crn 4719  cres 4720  Fun wfun 5311   Fn wfn 5312  wf 5313  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325
This theorem is referenced by:  resflem  5798  tfrcl  6508  frecfcllem  6548  lmbr2  14882  lmff  14917
  Copyright terms: Public domain W3C validator