ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ffvresb GIF version

Theorem ffvresb 5551
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
ffvresb (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffvresb
StepHypRef Expression
1 fdm 5248 . . . . . 6 ((𝐹𝐴):𝐴𝐵 → dom (𝐹𝐴) = 𝐴)
2 dmres 4810 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3 inss2 3267 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
42, 3eqsstri 3099 . . . . . 6 dom (𝐹𝐴) ⊆ dom 𝐹
51, 4eqsstrrdi 3120 . . . . 5 ((𝐹𝐴):𝐴𝐵𝐴 ⊆ dom 𝐹)
65sselda 3067 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
7 fvres 5413 . . . . . 6 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
87adantl 275 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
9 ffvelrn 5521 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) ∈ 𝐵)
108, 9eqeltrrd 2195 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
116, 10jca 304 . . 3 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
1211ralrimiva 2482 . 2 ((𝐹𝐴):𝐴𝐵 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
13 simpl 108 . . . . . . 7 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥 ∈ dom 𝐹)
1413ralimi 2472 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
15 dfss3 3057 . . . . . 6 (𝐴 ⊆ dom 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
1614, 15sylibr 133 . . . . 5 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝐴 ⊆ dom 𝐹)
17 funfn 5123 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
18 fnssres 5206 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
1917, 18sylanb 282 . . . . 5 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
2016, 19sylan2 284 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) Fn 𝐴)
21 simpr 109 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) ∈ 𝐵)
227eleq1d 2186 . . . . . . . 8 (𝑥𝐴 → (((𝐹𝐴)‘𝑥) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2321, 22syl5ibr 155 . . . . . . 7 (𝑥𝐴 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐹𝐴)‘𝑥) ∈ 𝐵))
2423ralimia 2470 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
2524adantl 275 . . . . 5 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
26 fnfvrnss 5548 . . . . 5 (((𝐹𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵) → ran (𝐹𝐴) ⊆ 𝐵)
2720, 25, 26syl2anc 408 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ran (𝐹𝐴) ⊆ 𝐵)
28 df-f 5097 . . . 4 ((𝐹𝐴):𝐴𝐵 ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) ⊆ 𝐵))
2920, 27, 28sylanbrc 413 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴):𝐴𝐵)
3029ex 114 . 2 (Fun 𝐹 → (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴):𝐴𝐵))
3112, 30impbid2 142 1 (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465  wral 2393  cin 3040  wss 3041  dom cdm 4509  ran crn 4510  cres 4511  Fun wfun 5087   Fn wfn 5088  wf 5089  cfv 5093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-sbc 2883  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101
This theorem is referenced by:  resflem  5552  tfrcl  6229  frecfcllem  6269  lmbr2  12310  lmff  12345
  Copyright terms: Public domain W3C validator