Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2nnnn | GIF version |
Description: A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8890 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7862). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
peano1nnnn.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Ref | Expression |
---|---|
peano2nnnn | ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1nnnn.n | . . . . . 6 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2237 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 ↔ 𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | elintg 3839 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) | |
4 | 2, 3 | syl5bb 191 | . . . 4 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) |
5 | 4 | ibi 175 | . . 3 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧) |
6 | vex 2733 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
7 | eleq2 2234 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
8 | eleq2 2234 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
9 | 8 | raleqbi1dv 2673 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
10 | 7, 9 | anbi12d 470 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
11 | 6, 10 | elab 2874 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
12 | 11 | simprbi 273 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) |
13 | oveq1 5860 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1)) | |
14 | 13 | eleq1d 2239 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧)) |
15 | 14 | rspcva 2832 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧) |
16 | 12, 15 | sylan2 284 | . . . . 5 ⊢ ((𝐴 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧) |
17 | 16 | expcom 115 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴 ∈ 𝑧 → (𝐴 + 1) ∈ 𝑧)) |
18 | 17 | ralimia 2531 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
19 | 5, 18 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
20 | df-1 7782 | . . . . 5 ⊢ 1 = 〈1R, 0R〉 | |
21 | 1sr 7713 | . . . . . 6 ⊢ 1R ∈ R | |
22 | 0r 7712 | . . . . . 6 ⊢ 0R ∈ R | |
23 | opexg 4213 | . . . . . 6 ⊢ ((1R ∈ R ∧ 0R ∈ R) → 〈1R, 0R〉 ∈ V) | |
24 | 21, 22, 23 | mp2an 424 | . . . . 5 ⊢ 〈1R, 0R〉 ∈ V |
25 | 20, 24 | eqeltri 2243 | . . . 4 ⊢ 1 ∈ V |
26 | addvalex 7806 | . . . 4 ⊢ ((𝐴 ∈ 𝑁 ∧ 1 ∈ V) → (𝐴 + 1) ∈ V) | |
27 | 25, 26 | mpan2 423 | . . 3 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ V) |
28 | 1 | eleq2i 2237 | . . . 4 ⊢ ((𝐴 + 1) ∈ 𝑁 ↔ (𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
29 | elintg 3839 | . . . 4 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | |
30 | 28, 29 | syl5bb 191 | . . 3 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
31 | 27, 30 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
32 | 19, 31 | mpbird 166 | 1 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 Vcvv 2730 〈cop 3586 ∩ cint 3831 (class class class)co 5853 Rcnr 7259 0Rc0r 7260 1Rc1r 7261 1c1 7775 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-enr 7688 df-nr 7689 df-0r 7693 df-1r 7694 df-c 7780 df-1 7782 df-add 7785 |
This theorem is referenced by: nnindnn 7855 |
Copyright terms: Public domain | W3C validator |