| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano2nnnn | GIF version | ||
| Description: A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 9002 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7967). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| peano1nnnn.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | 
| Ref | Expression | 
|---|---|
| peano2nnnn | ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | peano1nnnn.n | . . . . . 6 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
| 2 | 1 | eleq2i 2263 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 ↔ 𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | 
| 3 | elintg 3882 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) | |
| 4 | 2, 3 | bitrid 192 | . . . 4 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) | 
| 5 | 4 | ibi 176 | . . 3 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧) | 
| 6 | vex 2766 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
| 7 | eleq2 2260 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
| 8 | eleq2 2260 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
| 9 | 8 | raleqbi1dv 2705 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) | 
| 10 | 7, 9 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) | 
| 11 | 6, 10 | elab 2908 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) | 
| 12 | 11 | simprbi 275 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) | 
| 13 | oveq1 5929 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1)) | |
| 14 | 13 | eleq1d 2265 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧)) | 
| 15 | 14 | rspcva 2866 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧) | 
| 16 | 12, 15 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧) | 
| 17 | 16 | expcom 116 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴 ∈ 𝑧 → (𝐴 + 1) ∈ 𝑧)) | 
| 18 | 17 | ralimia 2558 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) | 
| 19 | 5, 18 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) | 
| 20 | df-1 7887 | . . . . 5 ⊢ 1 = 〈1R, 0R〉 | |
| 21 | 1sr 7818 | . . . . . 6 ⊢ 1R ∈ R | |
| 22 | 0r 7817 | . . . . . 6 ⊢ 0R ∈ R | |
| 23 | opexg 4261 | . . . . . 6 ⊢ ((1R ∈ R ∧ 0R ∈ R) → 〈1R, 0R〉 ∈ V) | |
| 24 | 21, 22, 23 | mp2an 426 | . . . . 5 ⊢ 〈1R, 0R〉 ∈ V | 
| 25 | 20, 24 | eqeltri 2269 | . . . 4 ⊢ 1 ∈ V | 
| 26 | addvalex 7911 | . . . 4 ⊢ ((𝐴 ∈ 𝑁 ∧ 1 ∈ V) → (𝐴 + 1) ∈ V) | |
| 27 | 25, 26 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ V) | 
| 28 | 1 | eleq2i 2263 | . . . 4 ⊢ ((𝐴 + 1) ∈ 𝑁 ↔ (𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) | 
| 29 | elintg 3882 | . . . 4 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | |
| 30 | 28, 29 | bitrid 192 | . . 3 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | 
| 31 | 27, 30 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | 
| 32 | 19, 31 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 Vcvv 2763 〈cop 3625 ∩ cint 3874 (class class class)co 5922 Rcnr 7364 0Rc0r 7365 1Rc1r 7366 1c1 7880 + caddc 7882 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-enr 7793 df-nr 7794 df-0r 7798 df-1r 7799 df-c 7885 df-1 7887 df-add 7890 | 
| This theorem is referenced by: nnindnn 7960 | 
| Copyright terms: Public domain | W3C validator |