![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2nnnn | GIF version |
Description: A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8996 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7962). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
peano1nnnn.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Ref | Expression |
---|---|
peano2nnnn | ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1nnnn.n | . . . . . 6 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2260 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 ↔ 𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | elintg 3879 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) | |
4 | 2, 3 | bitrid 192 | . . . 4 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) |
5 | 4 | ibi 176 | . . 3 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧) |
6 | vex 2763 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
7 | eleq2 2257 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
8 | eleq2 2257 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
9 | 8 | raleqbi1dv 2702 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
10 | 7, 9 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
11 | 6, 10 | elab 2905 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
12 | 11 | simprbi 275 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) |
13 | oveq1 5926 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1)) | |
14 | 13 | eleq1d 2262 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧)) |
15 | 14 | rspcva 2863 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧) |
16 | 12, 15 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧) |
17 | 16 | expcom 116 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴 ∈ 𝑧 → (𝐴 + 1) ∈ 𝑧)) |
18 | 17 | ralimia 2555 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
19 | 5, 18 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
20 | df-1 7882 | . . . . 5 ⊢ 1 = 〈1R, 0R〉 | |
21 | 1sr 7813 | . . . . . 6 ⊢ 1R ∈ R | |
22 | 0r 7812 | . . . . . 6 ⊢ 0R ∈ R | |
23 | opexg 4258 | . . . . . 6 ⊢ ((1R ∈ R ∧ 0R ∈ R) → 〈1R, 0R〉 ∈ V) | |
24 | 21, 22, 23 | mp2an 426 | . . . . 5 ⊢ 〈1R, 0R〉 ∈ V |
25 | 20, 24 | eqeltri 2266 | . . . 4 ⊢ 1 ∈ V |
26 | addvalex 7906 | . . . 4 ⊢ ((𝐴 ∈ 𝑁 ∧ 1 ∈ V) → (𝐴 + 1) ∈ V) | |
27 | 25, 26 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ V) |
28 | 1 | eleq2i 2260 | . . . 4 ⊢ ((𝐴 + 1) ∈ 𝑁 ↔ (𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
29 | elintg 3879 | . . . 4 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | |
30 | 28, 29 | bitrid 192 | . . 3 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
31 | 27, 30 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
32 | 19, 31 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 Vcvv 2760 〈cop 3622 ∩ cint 3871 (class class class)co 5919 Rcnr 7359 0Rc0r 7360 1Rc1r 7361 1c1 7875 + caddc 7877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-enr 7788 df-nr 7789 df-0r 7793 df-1r 7794 df-c 7880 df-1 7882 df-add 7885 |
This theorem is referenced by: nnindnn 7955 |
Copyright terms: Public domain | W3C validator |