![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2nnnn | GIF version |
Description: A successor of a positive integer is a positive integer. This is a counterpart to peano2nn 8920 designed for real number axioms which involve to natural numbers (notably, axcaucvg 7890). (Contributed by Jim Kingdon, 14-Jul-2021.) (New usage is discouraged.) |
Ref | Expression |
---|---|
peano1nnnn.n | ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Ref | Expression |
---|---|
peano2nnnn | ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1nnnn.n | . . . . . 6 ⊢ 𝑁 = ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | |
2 | 1 | eleq2i 2244 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 ↔ 𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
3 | elintg 3850 | . . . . 5 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) | |
4 | 2, 3 | bitrid 192 | . . . 4 ⊢ (𝐴 ∈ 𝑁 → (𝐴 ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧)) |
5 | 4 | ibi 176 | . . 3 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧) |
6 | vex 2740 | . . . . . . . 8 ⊢ 𝑧 ∈ V | |
7 | eleq2 2241 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (1 ∈ 𝑥 ↔ 1 ∈ 𝑧)) | |
8 | eleq2 2241 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ 𝑧)) | |
9 | 8 | raleqbi1dv 2680 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
10 | 7, 9 | anbi12d 473 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → ((1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧))) |
11 | 6, 10 | elab 2881 | . . . . . . 7 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (1 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧)) |
12 | 11 | simprbi 275 | . . . . . 6 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) |
13 | oveq1 5876 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (𝑦 + 1) = (𝐴 + 1)) | |
14 | 13 | eleq1d 2246 | . . . . . . 7 ⊢ (𝑦 = 𝐴 → ((𝑦 + 1) ∈ 𝑧 ↔ (𝐴 + 1) ∈ 𝑧)) |
15 | 14 | rspcva 2839 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑧 ∧ ∀𝑦 ∈ 𝑧 (𝑦 + 1) ∈ 𝑧) → (𝐴 + 1) ∈ 𝑧) |
16 | 12, 15 | sylan2 286 | . . . . 5 ⊢ ((𝐴 ∈ 𝑧 ∧ 𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) → (𝐴 + 1) ∈ 𝑧) |
17 | 16 | expcom 116 | . . . 4 ⊢ (𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → (𝐴 ∈ 𝑧 → (𝐴 + 1) ∈ 𝑧)) |
18 | 17 | ralimia 2538 | . . 3 ⊢ (∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}𝐴 ∈ 𝑧 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
19 | 5, 18 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧) |
20 | df-1 7810 | . . . . 5 ⊢ 1 = 〈1R, 0R〉 | |
21 | 1sr 7741 | . . . . . 6 ⊢ 1R ∈ R | |
22 | 0r 7740 | . . . . . 6 ⊢ 0R ∈ R | |
23 | opexg 4225 | . . . . . 6 ⊢ ((1R ∈ R ∧ 0R ∈ R) → 〈1R, 0R〉 ∈ V) | |
24 | 21, 22, 23 | mp2an 426 | . . . . 5 ⊢ 〈1R, 0R〉 ∈ V |
25 | 20, 24 | eqeltri 2250 | . . . 4 ⊢ 1 ∈ V |
26 | addvalex 7834 | . . . 4 ⊢ ((𝐴 ∈ 𝑁 ∧ 1 ∈ V) → (𝐴 + 1) ∈ V) | |
27 | 25, 26 | mpan2 425 | . . 3 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ V) |
28 | 1 | eleq2i 2244 | . . . 4 ⊢ ((𝐴 + 1) ∈ 𝑁 ↔ (𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)}) |
29 | elintg 3850 | . . . 4 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ ∩ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) | |
30 | 28, 29 | bitrid 192 | . . 3 ⊢ ((𝐴 + 1) ∈ V → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
31 | 27, 30 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑁 → ((𝐴 + 1) ∈ 𝑁 ↔ ∀𝑧 ∈ {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} (𝐴 + 1) ∈ 𝑧)) |
32 | 19, 31 | mpbird 167 | 1 ⊢ (𝐴 ∈ 𝑁 → (𝐴 + 1) ∈ 𝑁) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 Vcvv 2737 〈cop 3594 ∩ cint 3842 (class class class)co 5869 Rcnr 7287 0Rc0r 7288 1Rc1r 7289 1c1 7803 + caddc 7805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4115 ax-sep 4118 ax-nul 4126 ax-pow 4171 ax-pr 4206 ax-un 4430 ax-setind 4533 ax-iinf 4584 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3576 df-sn 3597 df-pr 3598 df-op 3600 df-uni 3808 df-int 3843 df-iun 3886 df-br 4001 df-opab 4062 df-mpt 4063 df-tr 4099 df-eprel 4286 df-id 4290 df-po 4293 df-iso 4294 df-iord 4363 df-on 4365 df-suc 4368 df-iom 4587 df-xp 4629 df-rel 4630 df-cnv 4631 df-co 4632 df-dm 4633 df-rn 4634 df-res 4635 df-ima 4636 df-iota 5174 df-fun 5214 df-fn 5215 df-f 5216 df-f1 5217 df-fo 5218 df-f1o 5219 df-fv 5220 df-ov 5872 df-oprab 5873 df-mpo 5874 df-1st 6135 df-2nd 6136 df-recs 6300 df-irdg 6365 df-1o 6411 df-2o 6412 df-oadd 6415 df-omul 6416 df-er 6529 df-ec 6531 df-qs 6535 df-ni 7294 df-pli 7295 df-mi 7296 df-lti 7297 df-plpq 7334 df-mpq 7335 df-enq 7337 df-nqqs 7338 df-plqqs 7339 df-mqqs 7340 df-1nqqs 7341 df-rq 7342 df-ltnqqs 7343 df-enq0 7414 df-nq0 7415 df-0nq0 7416 df-plq0 7417 df-mq0 7418 df-inp 7456 df-i1p 7457 df-iplp 7458 df-enr 7716 df-nr 7717 df-0r 7721 df-1r 7722 df-c 7808 df-1 7810 df-add 7813 |
This theorem is referenced by: nnindnn 7883 |
Copyright terms: Public domain | W3C validator |