ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rr19.3v GIF version

Theorem rr19.3v 2865
Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 25-Oct-2012.)
Assertion
Ref Expression
rr19.3v (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rr19.3v
StepHypRef Expression
1 biidd 171 . . . 4 (𝑦 = 𝑥 → (𝜑𝜑))
21rspcv 2826 . . 3 (𝑥𝐴 → (∀𝑦𝐴 𝜑𝜑))
32ralimia 2527 . 2 (∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑥𝐴 𝜑)
4 ax-1 6 . . . 4 (𝜑 → (𝑦𝐴𝜑))
54ralrimiv 2538 . . 3 (𝜑 → ∀𝑦𝐴 𝜑)
65ralimi 2529 . 2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑)
73, 6impbii 125 1 (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 2136  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator