Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rr19.3v | GIF version |
Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. (Contributed by NM, 25-Oct-2012.) |
Ref | Expression |
---|---|
rr19.3v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 171 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
2 | 1 | rspcv 2826 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝜑 → 𝜑)) |
3 | 2 | ralimia 2527 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
4 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝜑)) | |
5 | 4 | ralrimiv 2538 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝜑) |
6 | 5 | ralimi 2529 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) |
7 | 3, 6 | impbii 125 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |