ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpf GIF version

Theorem ixpf 6710
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 6692 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssiun2 3925 . . . . . . 7 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
32sseld 3152 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵 → (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
43ralimia 2536 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵)
54anim2i 342 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
6 nfcv 2317 . . . . 5 𝑥𝐴
7 nfiu1 3912 . . . . 5 𝑥 𝑥𝐴 𝐵
8 nfcv 2317 . . . . 5 𝑥𝐹
96, 7, 8ffnfvf 5667 . . . 4 (𝐹:𝐴 𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
105, 9sylibr 134 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
11103adant1 1015 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
121, 11sylbi 121 1 (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wcel 2146  wral 2453  Vcvv 2735   ciun 3882   Fn wfn 5203  wf 5204  cfv 5208  Xcixp 6688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-fv 5216  df-ixp 6689
This theorem is referenced by:  uniixp  6711  ixpssmap2g  6717
  Copyright terms: Public domain W3C validator