Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpf | GIF version |
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
ixpf | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elixp2 6692 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | |
2 | ssiun2 3925 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
3 | 2 | sseld 3152 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((𝐹‘𝑥) ∈ 𝐵 → (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
4 | 3 | ralimia 2536 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
5 | 4 | anim2i 342 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
6 | nfcv 2317 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
7 | nfiu1 3912 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
8 | nfcv 2317 | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
9 | 6, 7, 8 | ffnfvf 5667 | . . . 4 ⊢ (𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ ∪ 𝑥 ∈ 𝐴 𝐵)) |
10 | 5, 9 | sylibr 134 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
11 | 10 | 3adant1 1015 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 1, 11 | sylbi 121 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹:𝐴⟶∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2146 ∀wral 2453 Vcvv 2735 ∪ ciun 3882 Fn wfn 5203 ⟶wf 5204 ‘cfv 5208 Xcixp 6688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-ixp 6689 |
This theorem is referenced by: uniixp 6711 ixpssmap2g 6717 |
Copyright terms: Public domain | W3C validator |