ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpf GIF version

Theorem ixpf 6865
Description: A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
ixpf (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpf
StepHypRef Expression
1 elixp2 6847 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssiun2 4007 . . . . . . 7 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
32sseld 3223 . . . . . 6 (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵 → (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
43ralimia 2591 . . . . 5 (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵)
54anim2i 342 . . . 4 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
6 nfcv 2372 . . . . 5 𝑥𝐴
7 nfiu1 3994 . . . . 5 𝑥 𝑥𝐴 𝐵
8 nfcv 2372 . . . . 5 𝑥𝐹
96, 7, 8ffnfvf 5793 . . . 4 (𝐹:𝐴 𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝑥𝐴 𝐵))
105, 9sylibr 134 . . 3 ((𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
11103adant1 1039 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) → 𝐹:𝐴 𝑥𝐴 𝐵)
121, 11sylbi 121 1 (𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200  wral 2508  Vcvv 2799   ciun 3964   Fn wfn 5312  wf 5313  cfv 5317  Xcixp 6843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-ixp 6844
This theorem is referenced by:  uniixp  6866  ixpssmap2g  6872
  Copyright terms: Public domain W3C validator