Proof of Theorem baspartn
| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑃 → 𝑥 ∈ 𝑃) |
| 2 | | pwidg 3619 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑃 → 𝑥 ∈ 𝒫 𝑥) |
| 3 | 1, 2 | elind 3348 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑃 → 𝑥 ∈ (𝑃 ∩ 𝒫 𝑥)) |
| 4 | | elssuni 3867 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑃 ∩ 𝒫 𝑥) → 𝑥 ⊆ ∪ (𝑃 ∩ 𝒫 𝑥)) |
| 5 | 3, 4 | syl 14 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑃 → 𝑥 ⊆ ∪ (𝑃 ∩ 𝒫 𝑥)) |
| 6 | | inidm 3372 |
. . . . . . . . 9
⊢ (𝑥 ∩ 𝑥) = 𝑥 |
| 7 | | ineq2 3358 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∩ 𝑥) = (𝑥 ∩ 𝑦)) |
| 8 | 6, 7 | eqtr3id 2243 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → 𝑥 = (𝑥 ∩ 𝑦)) |
| 9 | 8 | pweqd 3610 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 (𝑥 ∩ 𝑦)) |
| 10 | 9 | ineq2d 3364 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 11 | 10 | unieqd 3850 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ∪ (𝑃 ∩ 𝒫 𝑥) = ∪
(𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 12 | 8, 11 | sseq12d 3214 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 ⊆ ∪ (𝑃 ∩ 𝒫 𝑥) ↔ (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 13 | 5, 12 | syl5ibcom 155 |
. . . . . 6
⊢ (𝑥 ∈ 𝑃 → (𝑥 = 𝑦 → (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 14 | | 0ss 3489 |
. . . . . . . 8
⊢ ∅
⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)) |
| 15 | | sseq1 3206 |
. . . . . . . 8
⊢ ((𝑥 ∩ 𝑦) = ∅ → ((𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)) ↔ ∅ ⊆ ∪ (𝑃
∩ 𝒫 (𝑥 ∩
𝑦)))) |
| 16 | 14, 15 | mpbiri 168 |
. . . . . . 7
⊢ ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 17 | 16 | a1i 9 |
. . . . . 6
⊢ (𝑥 ∈ 𝑃 → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 18 | 13, 17 | jaod 718 |
. . . . 5
⊢ (𝑥 ∈ 𝑃 → ((𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 19 | 18 | ralimdv 2565 |
. . . 4
⊢ (𝑥 ∈ 𝑃 → (∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ∀𝑦 ∈ 𝑃 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 20 | 19 | ralimia 2558 |
. . 3
⊢
(∀𝑥 ∈
𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅) → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 21 | 20 | adantl 277 |
. 2
⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦))) |
| 22 | | isbasisg 14280 |
. . 3
⊢ (𝑃 ∈ 𝑉 → (𝑃 ∈ TopBases ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 23 | 22 | adantr 276 |
. 2
⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → (𝑃 ∈ TopBases ↔ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 ∩ 𝑦) ⊆ ∪ (𝑃 ∩ 𝒫 (𝑥 ∩ 𝑦)))) |
| 24 | 21, 23 | mpbird 167 |
1
⊢ ((𝑃 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) → 𝑃 ∈ TopBases) |