ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baspartn GIF version

Theorem baspartn 14689
Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
baspartn ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
Distinct variable group:   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem baspartn
StepHypRef Expression
1 id 19 . . . . . . . . 9 (𝑥𝑃𝑥𝑃)
2 pwidg 3643 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ 𝒫 𝑥)
31, 2elind 3369 . . . . . . . 8 (𝑥𝑃𝑥 ∈ (𝑃 ∩ 𝒫 𝑥))
4 elssuni 3895 . . . . . . . 8 (𝑥 ∈ (𝑃 ∩ 𝒫 𝑥) → 𝑥 (𝑃 ∩ 𝒫 𝑥))
53, 4syl 14 . . . . . . 7 (𝑥𝑃𝑥 (𝑃 ∩ 𝒫 𝑥))
6 inidm 3393 . . . . . . . . 9 (𝑥𝑥) = 𝑥
7 ineq2 3379 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥) = (𝑥𝑦))
86, 7eqtr3id 2256 . . . . . . . 8 (𝑥 = 𝑦𝑥 = (𝑥𝑦))
98pweqd 3634 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 (𝑥𝑦))
109ineq2d 3385 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
1110unieqd 3878 . . . . . . . 8 (𝑥 = 𝑦 (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
128, 11sseq12d 3235 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝑃 ∩ 𝒫 𝑥) ↔ (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
135, 12syl5ibcom 155 . . . . . 6 (𝑥𝑃 → (𝑥 = 𝑦 → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
14 0ss 3510 . . . . . . . 8 ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))
15 sseq1 3227 . . . . . . . 8 ((𝑥𝑦) = ∅ → ((𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)) ↔ ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1614, 15mpbiri 168 . . . . . . 7 ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
1716a1i 9 . . . . . 6 (𝑥𝑃 → ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1813, 17jaod 721 . . . . 5 (𝑥𝑃 → ((𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1918ralimdv 2578 . . . 4 (𝑥𝑃 → (∀𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2019ralimia 2571 . . 3 (∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
2120adantl 277 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
22 isbasisg 14683 . . 3 (𝑃𝑉 → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2322adantr 276 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2421, 23mpbird 167 1 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 712   = wceq 1375  wcel 2180  wral 2488  cin 3176  wss 3177  c0 3471  𝒫 cpw 3629   cuni 3867  TopBasesctb 14681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-dif 3179  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-uni 3868  df-bases 14682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator