ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  baspartn GIF version

Theorem baspartn 12688
Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
baspartn ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
Distinct variable group:   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem baspartn
StepHypRef Expression
1 id 19 . . . . . . . . 9 (𝑥𝑃𝑥𝑃)
2 pwidg 3573 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ 𝒫 𝑥)
31, 2elind 3307 . . . . . . . 8 (𝑥𝑃𝑥 ∈ (𝑃 ∩ 𝒫 𝑥))
4 elssuni 3817 . . . . . . . 8 (𝑥 ∈ (𝑃 ∩ 𝒫 𝑥) → 𝑥 (𝑃 ∩ 𝒫 𝑥))
53, 4syl 14 . . . . . . 7 (𝑥𝑃𝑥 (𝑃 ∩ 𝒫 𝑥))
6 inidm 3331 . . . . . . . . 9 (𝑥𝑥) = 𝑥
7 ineq2 3317 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥) = (𝑥𝑦))
86, 7eqtr3id 2213 . . . . . . . 8 (𝑥 = 𝑦𝑥 = (𝑥𝑦))
98pweqd 3564 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 (𝑥𝑦))
109ineq2d 3323 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
1110unieqd 3800 . . . . . . . 8 (𝑥 = 𝑦 (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
128, 11sseq12d 3173 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝑃 ∩ 𝒫 𝑥) ↔ (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
135, 12syl5ibcom 154 . . . . . 6 (𝑥𝑃 → (𝑥 = 𝑦 → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
14 0ss 3447 . . . . . . . 8 ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))
15 sseq1 3165 . . . . . . . 8 ((𝑥𝑦) = ∅ → ((𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)) ↔ ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1614, 15mpbiri 167 . . . . . . 7 ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
1716a1i 9 . . . . . 6 (𝑥𝑃 → ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1813, 17jaod 707 . . . . 5 (𝑥𝑃 → ((𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1918ralimdv 2534 . . . 4 (𝑥𝑃 → (∀𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2019ralimia 2527 . . 3 (∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
2120adantl 275 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
22 isbasisg 12682 . . 3 (𝑃𝑉 → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2322adantr 274 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2421, 23mpbird 166 1 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wral 2444  cin 3115  wss 3116  c0 3409  𝒫 cpw 3559   cuni 3789  TopBasesctb 12680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-uni 3790  df-bases 12681
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator