Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  baspartn GIF version

Theorem baspartn 12206
 Description: A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
baspartn ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
Distinct variable group:   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem baspartn
StepHypRef Expression
1 id 19 . . . . . . . . 9 (𝑥𝑃𝑥𝑃)
2 pwidg 3519 . . . . . . . . 9 (𝑥𝑃𝑥 ∈ 𝒫 𝑥)
31, 2elind 3256 . . . . . . . 8 (𝑥𝑃𝑥 ∈ (𝑃 ∩ 𝒫 𝑥))
4 elssuni 3759 . . . . . . . 8 (𝑥 ∈ (𝑃 ∩ 𝒫 𝑥) → 𝑥 (𝑃 ∩ 𝒫 𝑥))
53, 4syl 14 . . . . . . 7 (𝑥𝑃𝑥 (𝑃 ∩ 𝒫 𝑥))
6 inidm 3280 . . . . . . . . 9 (𝑥𝑥) = 𝑥
7 ineq2 3266 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝑥) = (𝑥𝑦))
86, 7syl5eqr 2184 . . . . . . . 8 (𝑥 = 𝑦𝑥 = (𝑥𝑦))
98pweqd 3510 . . . . . . . . . 10 (𝑥 = 𝑦 → 𝒫 𝑥 = 𝒫 (𝑥𝑦))
109ineq2d 3272 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
1110unieqd 3742 . . . . . . . 8 (𝑥 = 𝑦 (𝑃 ∩ 𝒫 𝑥) = (𝑃 ∩ 𝒫 (𝑥𝑦)))
128, 11sseq12d 3123 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 (𝑃 ∩ 𝒫 𝑥) ↔ (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
135, 12syl5ibcom 154 . . . . . 6 (𝑥𝑃 → (𝑥 = 𝑦 → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
14 0ss 3396 . . . . . . . 8 ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))
15 sseq1 3115 . . . . . . . 8 ((𝑥𝑦) = ∅ → ((𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)) ↔ ∅ ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1614, 15mpbiri 167 . . . . . . 7 ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
1716a1i 9 . . . . . 6 (𝑥𝑃 → ((𝑥𝑦) = ∅ → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1813, 17jaod 706 . . . . 5 (𝑥𝑃 → ((𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
1918ralimdv 2498 . . . 4 (𝑥𝑃 → (∀𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2019ralimia 2491 . . 3 (∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
2120adantl 275 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦)))
22 isbasisg 12200 . . 3 (𝑃𝑉 → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2322adantr 274 . 2 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → (𝑃 ∈ TopBases ↔ ∀𝑥𝑃𝑦𝑃 (𝑥𝑦) ⊆ (𝑃 ∩ 𝒫 (𝑥𝑦))))
2421, 23mpbird 166 1 ((𝑃𝑉 ∧ ∀𝑥𝑃𝑦𝑃 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅)) → 𝑃 ∈ TopBases)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∨ wo 697   = wceq 1331   ∈ wcel 1480  ∀wral 2414   ∩ cin 3065   ⊆ wss 3066  ∅c0 3358  𝒫 cpw 3505  ∪ cuni 3731  TopBasesctb 12198 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-uni 3732  df-bases 12199 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator