Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  tridceq GIF version

Theorem tridceq 15546
Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15533 and redcwlpo 15545). Thus, this is an analytic analogue to lpowlpo 7227. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
tridceq (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem tridceq
StepHypRef Expression
1 ltne 8104 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦𝑥)
21ex 115 . . . . . 6 (𝑥 ∈ ℝ → (𝑥 < 𝑦𝑦𝑥))
32adantr 276 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑦𝑥))
4 olc 712 . . . . . 6 (𝑥𝑦 → (𝑥 = 𝑦𝑥𝑦))
5 necom 2448 . . . . . 6 (𝑦𝑥𝑥𝑦)
6 dcne 2375 . . . . . 6 (DECID 𝑥 = 𝑦 ↔ (𝑥 = 𝑦𝑥𝑦))
74, 5, 63imtr4i 201 . . . . 5 (𝑦𝑥DECID 𝑥 = 𝑦)
83, 7syl6 33 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦DECID 𝑥 = 𝑦))
9 orc 713 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑦𝑥𝑦))
109, 6sylibr 134 . . . . 5 (𝑥 = 𝑦DECID 𝑥 = 𝑦)
1110a1i 9 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = 𝑦DECID 𝑥 = 𝑦))
12 ltne 8104 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥𝑦)
1312ex 115 . . . . . 6 (𝑦 ∈ ℝ → (𝑦 < 𝑥𝑥𝑦))
1413adantl 277 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥𝑥𝑦))
154, 6sylibr 134 . . . . 5 (𝑥𝑦DECID 𝑥 = 𝑦)
1614, 15syl6 33 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥DECID 𝑥 = 𝑦))
178, 11, 163jaod 1315 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → DECID 𝑥 = 𝑦))
1817ralimdva 2561 . 2 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦))
1918ralimia 2555 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835  w3o 979  wcel 2164  wne 2364  wral 2472   class class class wbr 4029  cr 7871   < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059
This theorem is referenced by:  dcapnconstALT  15552
  Copyright terms: Public domain W3C validator