| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > tridceq | GIF version | ||
| Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 16154 and redcwlpo 16166). Thus, this is an analytic analogue to lpowlpo 7291. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| tridceq | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltne 8187 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ≠ 𝑥) | |
| 2 | 1 | ex 115 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝑥 < 𝑦 → 𝑦 ≠ 𝑥)) |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → 𝑦 ≠ 𝑥)) |
| 4 | olc 713 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
| 5 | necom 2461 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦) | |
| 6 | dcne 2388 | . . . . . 6 ⊢ (DECID 𝑥 = 𝑦 ↔ (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
| 7 | 4, 5, 6 | 3imtr4i 201 | . . . . 5 ⊢ (𝑦 ≠ 𝑥 → DECID 𝑥 = 𝑦) |
| 8 | 3, 7 | syl6 33 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → DECID 𝑥 = 𝑦)) |
| 9 | orc 714 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
| 10 | 9, 6 | sylibr 134 | . . . . 5 ⊢ (𝑥 = 𝑦 → DECID 𝑥 = 𝑦) |
| 11 | 10 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = 𝑦 → DECID 𝑥 = 𝑦)) |
| 12 | ltne 8187 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥 ≠ 𝑦) | |
| 13 | 12 | ex 115 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
| 14 | 13 | adantl 277 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
| 15 | 4, 6 | sylibr 134 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 → DECID 𝑥 = 𝑦) |
| 16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → DECID 𝑥 = 𝑦)) |
| 17 | 8, 11, 16 | 3jaod 1317 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → DECID 𝑥 = 𝑦)) |
| 18 | 17 | ralimdva 2574 | . 2 ⊢ (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)) |
| 19 | 18 | ralimia 2568 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 DECID wdc 836 ∨ w3o 980 ∈ wcel 2177 ≠ wne 2377 ∀wral 2485 class class class wbr 4054 ℝcr 7954 < clt 8137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-pre-ltirr 8067 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-xp 4694 df-pnf 8139 df-mnf 8140 df-ltxr 8142 |
| This theorem is referenced by: dcapnconstALT 16173 |
| Copyright terms: Public domain | W3C validator |