| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > tridceq | GIF version | ||
| Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15687 and redcwlpo 15699). Thus, this is an analytic analogue to lpowlpo 7234. (Contributed by Jim Kingdon, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| tridceq | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltne 8111 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ≠ 𝑥) | |
| 2 | 1 | ex 115 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝑥 < 𝑦 → 𝑦 ≠ 𝑥)) |
| 3 | 2 | adantr 276 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → 𝑦 ≠ 𝑥)) |
| 4 | olc 712 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
| 5 | necom 2451 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦) | |
| 6 | dcne 2378 | . . . . . 6 ⊢ (DECID 𝑥 = 𝑦 ↔ (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
| 7 | 4, 5, 6 | 3imtr4i 201 | . . . . 5 ⊢ (𝑦 ≠ 𝑥 → DECID 𝑥 = 𝑦) |
| 8 | 3, 7 | syl6 33 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → DECID 𝑥 = 𝑦)) |
| 9 | orc 713 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
| 10 | 9, 6 | sylibr 134 | . . . . 5 ⊢ (𝑥 = 𝑦 → DECID 𝑥 = 𝑦) |
| 11 | 10 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = 𝑦 → DECID 𝑥 = 𝑦)) |
| 12 | ltne 8111 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥 ≠ 𝑦) | |
| 13 | 12 | ex 115 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
| 14 | 13 | adantl 277 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
| 15 | 4, 6 | sylibr 134 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 → DECID 𝑥 = 𝑦) |
| 16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → DECID 𝑥 = 𝑦)) |
| 17 | 8, 11, 16 | 3jaod 1315 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → DECID 𝑥 = 𝑦)) |
| 18 | 17 | ralimdva 2564 | . 2 ⊢ (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)) |
| 19 | 18 | ralimia 2558 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 ∨ w3o 979 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 class class class wbr 4033 ℝcr 7878 < clt 8061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 |
| This theorem is referenced by: dcapnconstALT 15706 |
| Copyright terms: Public domain | W3C validator |