Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > tridceq | GIF version |
Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 13625 and redcwlpo 13637). Thus, this is an analytic analogue to lpowlpo 7111. (Contributed by Jim Kingdon, 24-Jul-2024.) |
Ref | Expression |
---|---|
tridceq | ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltne 7962 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ≠ 𝑥) | |
2 | 1 | ex 114 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (𝑥 < 𝑦 → 𝑦 ≠ 𝑥)) |
3 | 2 | adantr 274 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → 𝑦 ≠ 𝑥)) |
4 | olc 701 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
5 | necom 2411 | . . . . . 6 ⊢ (𝑦 ≠ 𝑥 ↔ 𝑥 ≠ 𝑦) | |
6 | dcne 2338 | . . . . . 6 ⊢ (DECID 𝑥 = 𝑦 ↔ (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
7 | 4, 5, 6 | 3imtr4i 200 | . . . . 5 ⊢ (𝑦 ≠ 𝑥 → DECID 𝑥 = 𝑦) |
8 | 3, 7 | syl6 33 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → DECID 𝑥 = 𝑦)) |
9 | orc 702 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ 𝑥 ≠ 𝑦)) | |
10 | 9, 6 | sylibr 133 | . . . . 5 ⊢ (𝑥 = 𝑦 → DECID 𝑥 = 𝑦) |
11 | 10 | a1i 9 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = 𝑦 → DECID 𝑥 = 𝑦)) |
12 | ltne 7962 | . . . . . . 7 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥 ≠ 𝑦) | |
13 | 12 | ex 114 | . . . . . 6 ⊢ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
14 | 13 | adantl 275 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
15 | 4, 6 | sylibr 133 | . . . . 5 ⊢ (𝑥 ≠ 𝑦 → DECID 𝑥 = 𝑦) |
16 | 14, 15 | syl6 33 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → DECID 𝑥 = 𝑦)) |
17 | 8, 11, 16 | 3jaod 1286 | . . 3 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → DECID 𝑥 = 𝑦)) |
18 | 17 | ralimdva 2524 | . 2 ⊢ (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)) |
19 | 18 | ralimia 2518 | 1 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 820 ∨ w3o 962 ∈ wcel 2128 ≠ wne 2327 ∀wral 2435 class class class wbr 3965 ℝcr 7731 < clt 7912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4496 ax-cnex 7823 ax-resscn 7824 ax-pre-ltirr 7844 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4592 df-pnf 7914 df-mnf 7915 df-ltxr 7917 |
This theorem is referenced by: dcapnconstALT 13643 |
Copyright terms: Public domain | W3C validator |