Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  tridceq GIF version

Theorem tridceq 15700
Description: Real trichotomy implies decidability of real number equality. Or in other words, analytic LPO implies analytic WLPO (see trilpo 15687 and redcwlpo 15699). Thus, this is an analytic analogue to lpowlpo 7234. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
tridceq (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦

Proof of Theorem tridceq
StepHypRef Expression
1 ltne 8111 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦𝑥)
21ex 115 . . . . . 6 (𝑥 ∈ ℝ → (𝑥 < 𝑦𝑦𝑥))
32adantr 276 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦𝑦𝑥))
4 olc 712 . . . . . 6 (𝑥𝑦 → (𝑥 = 𝑦𝑥𝑦))
5 necom 2451 . . . . . 6 (𝑦𝑥𝑥𝑦)
6 dcne 2378 . . . . . 6 (DECID 𝑥 = 𝑦 ↔ (𝑥 = 𝑦𝑥𝑦))
74, 5, 63imtr4i 201 . . . . 5 (𝑦𝑥DECID 𝑥 = 𝑦)
83, 7syl6 33 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦DECID 𝑥 = 𝑦))
9 orc 713 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑦𝑥𝑦))
109, 6sylibr 134 . . . . 5 (𝑥 = 𝑦DECID 𝑥 = 𝑦)
1110a1i 9 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 = 𝑦DECID 𝑥 = 𝑦))
12 ltne 8111 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥𝑦)
1312ex 115 . . . . . 6 (𝑦 ∈ ℝ → (𝑦 < 𝑥𝑥𝑦))
1413adantl 277 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥𝑥𝑦))
154, 6sylibr 134 . . . . 5 (𝑥𝑦DECID 𝑥 = 𝑦)
1614, 15syl6 33 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥DECID 𝑥 = 𝑦))
178, 11, 163jaod 1315 . . 3 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → DECID 𝑥 = 𝑦))
1817ralimdva 2564 . 2 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦))
1918ralimia 2558 1 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ DECID 𝑥 = 𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  DECID wdc 835  w3o 979  wcel 2167  wne 2367  wral 2475   class class class wbr 4033  cr 7878   < clt 8061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-pnf 8063  df-mnf 8064  df-ltxr 8066
This theorem is referenced by:  dcapnconstALT  15706
  Copyright terms: Public domain W3C validator