Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopab GIF version

Theorem difopab 4582
 Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
difopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem difopab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4577 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 reldif 4570 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
31, 2ax-mp 7 . 2 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
4 relopab 4577 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
5 sbcan 2882 . . . 4 ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
6 sbcan 2882 . . . . 5 ([𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ ([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓))
76sbcbii 2899 . . . 4 ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓))
8 opelopabsb 4096 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
9 vex 2623 . . . . . . 7 𝑧 ∈ V
10 sbcng 2880 . . . . . . 7 (𝑧 ∈ V → ([𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓 ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓))
119, 10ax-mp 7 . . . . . 6 ([𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓 ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
12 vex 2623 . . . . . . . 8 𝑤 ∈ V
13 sbcng 2880 . . . . . . . 8 (𝑤 ∈ V → ([𝑤 / 𝑦] ¬ 𝜓 ↔ ¬ [𝑤 / 𝑦]𝜓))
1412, 13ax-mp 7 . . . . . . 7 ([𝑤 / 𝑦] ¬ 𝜓 ↔ ¬ [𝑤 / 𝑦]𝜓)
1514sbcbii 2899 . . . . . 6 ([𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓[𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓)
16 opelopabsb 4096 . . . . . . 7 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
1716notbii 630 . . . . . 6 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
1811, 15, 173bitr4ri 212 . . . . 5 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓)
198, 18anbi12i 449 . . . 4 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
205, 7, 193bitr4ri 212 . . 3 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
21 eldif 3009 . . 3 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
22 opelopabsb 4096 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
2320, 21, 223bitr4i 211 . 2 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)})
243, 4, 23eqrelriiv 4545 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   ∧ wa 103   ↔ wb 104   = wceq 1290   ∈ wcel 1439  Vcvv 2620  [wsbc 2841   ∖ cdif 2997  ⟨cop 3453  {copab 3904  Rel wrel 4457 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045 This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-opab 3906  df-xp 4458  df-rel 4459 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator