ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difopab GIF version

Theorem difopab 4799
Description: The difference of two ordered-pair abstractions. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
difopab ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem difopab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 4792 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 reldif 4783 . . 3 (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} → Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
31, 2ax-mp 5 . 2 Rel ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
4 relopab 4792 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
5 sbcan 3032 . . . 4 ([𝑧 / 𝑥]([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
6 sbcan 3032 . . . . 5 ([𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ ([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓))
76sbcbii 3049 . . . 4 ([𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓) ↔ [𝑧 / 𝑥]([𝑤 / 𝑦]𝜑[𝑤 / 𝑦] ¬ 𝜓))
8 opelopabsb 4294 . . . . 5 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
9 vex 2766 . . . . . . 7 𝑧 ∈ V
10 sbcng 3030 . . . . . . 7 (𝑧 ∈ V → ([𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓 ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓))
119, 10ax-mp 5 . . . . . 6 ([𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓 ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
12 vex 2766 . . . . . . . 8 𝑤 ∈ V
13 sbcng 3030 . . . . . . . 8 (𝑤 ∈ V → ([𝑤 / 𝑦] ¬ 𝜓 ↔ ¬ [𝑤 / 𝑦]𝜓))
1412, 13ax-mp 5 . . . . . . 7 ([𝑤 / 𝑦] ¬ 𝜓 ↔ ¬ [𝑤 / 𝑦]𝜓)
1514sbcbii 3049 . . . . . 6 ([𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓[𝑧 / 𝑥] ¬ [𝑤 / 𝑦]𝜓)
16 opelopabsb 4294 . . . . . . 7 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
1716notbii 669 . . . . . 6 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ¬ [𝑧 / 𝑥][𝑤 / 𝑦]𝜓)
1811, 15, 173bitr4ri 213 . . . . 5 (¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ [𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓)
198, 18anbi12i 460 . . . 4 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝑤 / 𝑦] ¬ 𝜓))
205, 7, 193bitr4ri 213 . . 3 ((⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
21 eldif 3166 . . 3 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ¬ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
22 opelopabsb 4294 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)} ↔ [𝑧 / 𝑥][𝑤 / 𝑦](𝜑 ∧ ¬ 𝜓))
2320, 21, 223bitr4i 212 . 2 (⟨𝑧, 𝑤⟩ ∈ ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)})
243, 4, 23eqrelriiv 4757 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) = {⟨𝑥, 𝑦⟩ ∣ (𝜑 ∧ ¬ 𝜓)}
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  [wsbc 2989  cdif 3154  cop 3625  {copab 4093  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-opab 4095  df-xp 4669  df-rel 4670
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator