ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqi GIF version

Theorem releqi 4801
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.)
Hypothesis
Ref Expression
releqi.1 𝐴 = 𝐵
Assertion
Ref Expression
releqi (Rel 𝐴 ↔ Rel 𝐵)

Proof of Theorem releqi
StepHypRef Expression
1 releqi.1 . 2 𝐴 = 𝐵
2 releq 4800 . 2 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
31, 2ax-mp 5 1 (Rel 𝐴 ↔ Rel 𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210  df-rel 4725
This theorem is referenced by:  reliun  4839  reluni  4841  relint  4842  reldmmpo  6115  tfrlem6  6460  subrgdvds  14193  rrgmex  14219  lssmex  14313  2idlmex  14459  psmetrel  14990  metrel  15010  xmetrel  15011  xmetf  15018  mopnrel  15109
  Copyright terms: Public domain W3C validator