![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > releqi | GIF version |
Description: Equality inference for the relation predicate. (Contributed by NM, 8-Dec-2006.) |
Ref | Expression |
---|---|
releqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
releqi | ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | releq 4559 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (Rel 𝐴 ↔ Rel 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1299 Rel wrel 4482 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-11 1452 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-in 3027 df-ss 3034 df-rel 4484 |
This theorem is referenced by: reliun 4598 reluni 4600 relint 4601 reldmmpo 5814 tfrlem6 6143 psmetrel 12250 metrel 12270 xmetrel 12271 xmetf 12278 mopnrel 12369 |
Copyright terms: Public domain | W3C validator |