ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfn2 GIF version

Theorem tposfn2 6351
Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfn2 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))

Proof of Theorem tposfn2
StepHypRef Expression
1 tposfun 6345 . . . 4 (Fun 𝐹 → Fun tpos 𝐹)
21a1i 9 . . 3 (Rel 𝐴 → (Fun 𝐹 → Fun tpos 𝐹))
3 dmtpos 6341 . . . . . 6 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
43a1i 9 . . . . 5 (dom 𝐹 = 𝐴 → (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹))
5 releq 4756 . . . . 5 (dom 𝐹 = 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴))
6 cnveq 4851 . . . . . 6 (dom 𝐹 = 𝐴dom 𝐹 = 𝐴)
76eqeq2d 2216 . . . . 5 (dom 𝐹 = 𝐴 → (dom tpos 𝐹 = dom 𝐹 ↔ dom tpos 𝐹 = 𝐴))
84, 5, 73imtr3d 202 . . . 4 (dom 𝐹 = 𝐴 → (Rel 𝐴 → dom tpos 𝐹 = 𝐴))
98com12 30 . . 3 (Rel 𝐴 → (dom 𝐹 = 𝐴 → dom tpos 𝐹 = 𝐴))
102, 9anim12d 335 . 2 (Rel 𝐴 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (Fun tpos 𝐹 ∧ dom tpos 𝐹 = 𝐴)))
11 df-fn 5273 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
12 df-fn 5273 . 2 (tpos 𝐹 Fn 𝐴 ↔ (Fun tpos 𝐹 ∧ dom tpos 𝐹 = 𝐴))
1310, 11, 123imtr4g 205 1 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  ccnv 4673  dom cdm 4674  Rel wrel 4679  Fun wfun 5264   Fn wfn 5265  tpos ctpos 6329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-tpos 6330
This theorem is referenced by:  tposfo2  6352  tpos0  6359
  Copyright terms: Public domain W3C validator