| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tposfn2 | GIF version | ||
| Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposfn2 | ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposfun 6345 | . . . 4 ⊢ (Fun 𝐹 → Fun tpos 𝐹) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (Rel 𝐴 → (Fun 𝐹 → Fun tpos 𝐹)) |
| 3 | dmtpos 6341 | . . . . . 6 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
| 4 | 3 | a1i 9 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹)) |
| 5 | releq 4756 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) | |
| 6 | cnveq 4851 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → ◡dom 𝐹 = ◡𝐴) | |
| 7 | 6 | eqeq2d 2216 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (dom tpos 𝐹 = ◡dom 𝐹 ↔ dom tpos 𝐹 = ◡𝐴)) |
| 8 | 4, 5, 7 | 3imtr3d 202 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Rel 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
| 9 | 8 | com12 30 | . . 3 ⊢ (Rel 𝐴 → (dom 𝐹 = 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
| 10 | 2, 9 | anim12d 335 | . 2 ⊢ (Rel 𝐴 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴))) |
| 11 | df-fn 5273 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 12 | df-fn 5273 | . 2 ⊢ (tpos 𝐹 Fn ◡𝐴 ↔ (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴)) | |
| 13 | 10, 11, 12 | 3imtr4g 205 | 1 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ◡ccnv 4673 dom cdm 4674 Rel wrel 4679 Fun wfun 5264 Fn wfn 5265 tpos ctpos 6329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-tpos 6330 |
| This theorem is referenced by: tposfo2 6352 tpos0 6359 |
| Copyright terms: Public domain | W3C validator |