ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposfn2 GIF version

Theorem tposfn2 6375
Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposfn2 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))

Proof of Theorem tposfn2
StepHypRef Expression
1 tposfun 6369 . . . 4 (Fun 𝐹 → Fun tpos 𝐹)
21a1i 9 . . 3 (Rel 𝐴 → (Fun 𝐹 → Fun tpos 𝐹))
3 dmtpos 6365 . . . . . 6 (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹)
43a1i 9 . . . . 5 (dom 𝐹 = 𝐴 → (Rel dom 𝐹 → dom tpos 𝐹 = dom 𝐹))
5 releq 4775 . . . . 5 (dom 𝐹 = 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴))
6 cnveq 4870 . . . . . 6 (dom 𝐹 = 𝐴dom 𝐹 = 𝐴)
76eqeq2d 2219 . . . . 5 (dom 𝐹 = 𝐴 → (dom tpos 𝐹 = dom 𝐹 ↔ dom tpos 𝐹 = 𝐴))
84, 5, 73imtr3d 202 . . . 4 (dom 𝐹 = 𝐴 → (Rel 𝐴 → dom tpos 𝐹 = 𝐴))
98com12 30 . . 3 (Rel 𝐴 → (dom 𝐹 = 𝐴 → dom tpos 𝐹 = 𝐴))
102, 9anim12d 335 . 2 (Rel 𝐴 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (Fun tpos 𝐹 ∧ dom tpos 𝐹 = 𝐴)))
11 df-fn 5293 . 2 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
12 df-fn 5293 . 2 (tpos 𝐹 Fn 𝐴 ↔ (Fun tpos 𝐹 ∧ dom tpos 𝐹 = 𝐴))
1310, 11, 123imtr4g 205 1 (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  ccnv 4692  dom cdm 4693  Rel wrel 4698  Fun wfun 5284   Fn wfn 5285  tpos ctpos 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-tpos 6354
This theorem is referenced by:  tposfo2  6376  tpos0  6383
  Copyright terms: Public domain W3C validator