![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tposfn2 | GIF version |
Description: The domain of a transposition. (Contributed by NM, 10-Sep-2015.) |
Ref | Expression |
---|---|
tposfn2 | ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tposfun 6286 | . . . 4 ⊢ (Fun 𝐹 → Fun tpos 𝐹) | |
2 | 1 | a1i 9 | . . 3 ⊢ (Rel 𝐴 → (Fun 𝐹 → Fun tpos 𝐹)) |
3 | dmtpos 6282 | . . . . . 6 ⊢ (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹) | |
4 | 3 | a1i 9 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 → dom tpos 𝐹 = ◡dom 𝐹)) |
5 | releq 4726 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (Rel dom 𝐹 ↔ Rel 𝐴)) | |
6 | cnveq 4819 | . . . . . 6 ⊢ (dom 𝐹 = 𝐴 → ◡dom 𝐹 = ◡𝐴) | |
7 | 6 | eqeq2d 2201 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (dom tpos 𝐹 = ◡dom 𝐹 ↔ dom tpos 𝐹 = ◡𝐴)) |
8 | 4, 5, 7 | 3imtr3d 202 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (Rel 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
9 | 8 | com12 30 | . . 3 ⊢ (Rel 𝐴 → (dom 𝐹 = 𝐴 → dom tpos 𝐹 = ◡𝐴)) |
10 | 2, 9 | anim12d 335 | . 2 ⊢ (Rel 𝐴 → ((Fun 𝐹 ∧ dom 𝐹 = 𝐴) → (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴))) |
11 | df-fn 5238 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
12 | df-fn 5238 | . 2 ⊢ (tpos 𝐹 Fn ◡𝐴 ↔ (Fun tpos 𝐹 ∧ dom tpos 𝐹 = ◡𝐴)) | |
13 | 10, 11, 12 | 3imtr4g 205 | 1 ⊢ (Rel 𝐴 → (𝐹 Fn 𝐴 → tpos 𝐹 Fn ◡𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ◡ccnv 4643 dom cdm 4644 Rel wrel 4649 Fun wfun 5229 Fn wfn 5230 tpos ctpos 6270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-tpos 6271 |
This theorem is referenced by: tposfo2 6293 tpos0 6300 |
Copyright terms: Public domain | W3C validator |