ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 GIF version

Theorem dfrel2 5139
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2 (Rel 𝑅𝑅 = 𝑅)

Proof of Theorem dfrel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5066 . . 3 Rel 𝑅
2 vex 2776 . . . . . 6 𝑥 ∈ V
3 vex 2776 . . . . . 6 𝑦 ∈ V
42, 3opelcnv 4865 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
53, 2opelcnv 4865 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
64, 5bitri 184 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
76eqrelriv 4773 . . 3 ((Rel 𝑅 ∧ Rel 𝑅) → 𝑅 = 𝑅)
81, 7mpan 424 . 2 (Rel 𝑅𝑅 = 𝑅)
9 releq 4762 . . 3 (𝑅 = 𝑅 → (Rel 𝑅 ↔ Rel 𝑅))
101, 9mpbii 148 . 2 (𝑅 = 𝑅 → Rel 𝑅)
118, 10impbii 126 1 (Rel 𝑅𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1373  wcel 2177  cop 3638  ccnv 4679  Rel wrel 4685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-br 4049  df-opab 4111  df-xp 4686  df-rel 4687  df-cnv 4688
This theorem is referenced by:  dfrel4v  5140  cnvcnv  5141  cnveqb  5144  dfrel3  5146  cnvcnvres  5152  cnvsn  5171  cores2  5201  co01  5203  coi2  5205  relcnvtr  5208  relcnvexb  5228  funcnvres2  5355  f1cnvcnv  5501  f1ocnv  5544  f1ocnvb  5545  f1ococnv1  5560  isores1  5893  cnvf1o  6321  tposf12  6365  ssenen  6960  relcnvfi  7055  caseinl  7205  caseinr  7206  fsumcnv  11798  fprodcnv  11986  structcnvcnv  12898  hmeocnv  14829  hmeocnvb  14840
  Copyright terms: Public domain W3C validator