| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrel2 | GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5102 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 2802 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 2802 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 4901 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 4901 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 184 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 4809 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 424 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 4798 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 148 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 126 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 ◡ccnv 4715 Rel wrel 4721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4722 df-rel 4723 df-cnv 4724 |
| This theorem is referenced by: dfrel4v 5176 cnvcnv 5177 cnveqb 5180 dfrel3 5182 cnvcnvres 5188 cnvsn 5207 cores2 5237 co01 5239 coi2 5241 relcnvtr 5244 relcnvexb 5264 funcnvres2 5392 f1cnvcnv 5538 f1ocnv 5581 f1ocnvb 5582 f1ococnv1 5597 isores1 5931 cnvf1o 6361 tposf12 6405 ssenen 7000 relcnvfi 7096 caseinl 7246 caseinr 7247 fsumcnv 11934 fprodcnv 12122 structcnvcnv 13034 hmeocnv 14966 hmeocnvb 14977 |
| Copyright terms: Public domain | W3C validator |