ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 GIF version

Theorem dfrel2 5054
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2 (Rel 𝑅𝑅 = 𝑅)

Proof of Theorem dfrel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4982 . . 3 Rel 𝑅
2 vex 2729 . . . . . 6 𝑥 ∈ V
3 vex 2729 . . . . . 6 𝑦 ∈ V
42, 3opelcnv 4786 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
53, 2opelcnv 4786 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
64, 5bitri 183 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
76eqrelriv 4697 . . 3 ((Rel 𝑅 ∧ Rel 𝑅) → 𝑅 = 𝑅)
81, 7mpan 421 . 2 (Rel 𝑅𝑅 = 𝑅)
9 releq 4686 . . 3 (𝑅 = 𝑅 → (Rel 𝑅 ↔ Rel 𝑅))
101, 9mpbii 147 . 2 (𝑅 = 𝑅 → Rel 𝑅)
118, 10impbii 125 1 (Rel 𝑅𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wcel 2136  cop 3579  ccnv 4603  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  dfrel4v  5055  cnvcnv  5056  cnveqb  5059  dfrel3  5061  cnvcnvres  5067  cnvsn  5086  cores2  5116  co01  5118  coi2  5120  relcnvtr  5123  relcnvexb  5143  funcnvres2  5263  f1cnvcnv  5404  f1ocnv  5445  f1ocnvb  5446  f1ococnv1  5461  isores1  5782  cnvf1o  6193  tposf12  6237  ssenen  6817  relcnvfi  6906  caseinl  7056  caseinr  7057  fsumcnv  11378  fprodcnv  11566  structcnvcnv  12410  hmeocnv  12947  hmeocnvb  12958
  Copyright terms: Public domain W3C validator