![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfrel2 | GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4810 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 2622 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2622 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 4618 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 4618 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
6 | 4, 5 | bitri 182 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | 6 | eqrelriv 4531 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 415 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 4520 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 146 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 124 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 = wceq 1289 ∈ wcel 1438 〈cop 3449 ◡ccnv 4437 Rel wrel 4443 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-xp 4444 df-rel 4445 df-cnv 4446 |
This theorem is referenced by: dfrel4v 4882 cnvcnv 4883 cnveqb 4886 dfrel3 4888 cnvcnvres 4894 cnvsn 4913 cores2 4943 co01 4945 coi2 4947 relcnvtr 4950 relcnvexb 4970 funcnvres2 5089 f1cnvcnv 5227 f1ocnv 5266 f1ocnvb 5267 f1ococnv1 5282 isores1 5593 cnvf1o 5990 tposf12 6034 ssenen 6565 relcnvfi 6648 fsumcnv 10827 structcnvcnv 11506 |
Copyright terms: Public domain | W3C validator |