ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 GIF version

Theorem dfrel2 5117
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2 (Rel 𝑅𝑅 = 𝑅)

Proof of Theorem dfrel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5044 . . 3 Rel 𝑅
2 vex 2763 . . . . . 6 𝑥 ∈ V
3 vex 2763 . . . . . 6 𝑦 ∈ V
42, 3opelcnv 4845 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
53, 2opelcnv 4845 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
64, 5bitri 184 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
76eqrelriv 4753 . . 3 ((Rel 𝑅 ∧ Rel 𝑅) → 𝑅 = 𝑅)
81, 7mpan 424 . 2 (Rel 𝑅𝑅 = 𝑅)
9 releq 4742 . . 3 (𝑅 = 𝑅 → (Rel 𝑅 ↔ Rel 𝑅))
101, 9mpbii 148 . 2 (𝑅 = 𝑅 → Rel 𝑅)
118, 10impbii 126 1 (Rel 𝑅𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2164  cop 3622  ccnv 4659  Rel wrel 4665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668
This theorem is referenced by:  dfrel4v  5118  cnvcnv  5119  cnveqb  5122  dfrel3  5124  cnvcnvres  5130  cnvsn  5149  cores2  5179  co01  5181  coi2  5183  relcnvtr  5186  relcnvexb  5206  funcnvres2  5330  f1cnvcnv  5471  f1ocnv  5514  f1ocnvb  5515  f1ococnv1  5530  isores1  5858  cnvf1o  6280  tposf12  6324  ssenen  6909  relcnvfi  7002  caseinl  7152  caseinr  7153  fsumcnv  11583  fprodcnv  11771  structcnvcnv  12637  hmeocnv  14486  hmeocnvb  14497
  Copyright terms: Public domain W3C validator