| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrel2 | GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5066 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 2776 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 4865 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 4865 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 184 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 4773 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 424 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 4762 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 148 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 126 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ∈ wcel 2177 〈cop 3638 ◡ccnv 4679 Rel wrel 4685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-br 4049 df-opab 4111 df-xp 4686 df-rel 4687 df-cnv 4688 |
| This theorem is referenced by: dfrel4v 5140 cnvcnv 5141 cnveqb 5144 dfrel3 5146 cnvcnvres 5152 cnvsn 5171 cores2 5201 co01 5203 coi2 5205 relcnvtr 5208 relcnvexb 5228 funcnvres2 5355 f1cnvcnv 5501 f1ocnv 5544 f1ocnvb 5545 f1ococnv1 5560 isores1 5893 cnvf1o 6321 tposf12 6365 ssenen 6960 relcnvfi 7055 caseinl 7205 caseinr 7206 fsumcnv 11798 fprodcnv 11986 structcnvcnv 12898 hmeocnv 14829 hmeocnvb 14840 |
| Copyright terms: Public domain | W3C validator |