Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfrel2 | GIF version |
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4982 | . . 3 ⊢ Rel ◡◡𝑅 | |
2 | vex 2729 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | vex 2729 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | opelcnv 4786 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
5 | 3, 2 | opelcnv 4786 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
6 | 4, 5 | bitri 183 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
7 | 6 | eqrelriv 4697 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
8 | 1, 7 | mpan 421 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
9 | releq 4686 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
10 | 1, 9 | mpbii 147 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
11 | 8, 10 | impbii 125 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ∈ wcel 2136 〈cop 3579 ◡ccnv 4603 Rel wrel 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 |
This theorem is referenced by: dfrel4v 5055 cnvcnv 5056 cnveqb 5059 dfrel3 5061 cnvcnvres 5067 cnvsn 5086 cores2 5116 co01 5118 coi2 5120 relcnvtr 5123 relcnvexb 5143 funcnvres2 5263 f1cnvcnv 5404 f1ocnv 5445 f1ocnvb 5446 f1ococnv1 5461 isores1 5782 cnvf1o 6193 tposf12 6237 ssenen 6817 relcnvfi 6906 caseinl 7056 caseinr 7057 fsumcnv 11378 fprodcnv 11566 structcnvcnv 12410 hmeocnv 12947 hmeocnvb 12958 |
Copyright terms: Public domain | W3C validator |