ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrel2 GIF version

Theorem dfrel2 5175
Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
Assertion
Ref Expression
dfrel2 (Rel 𝑅𝑅 = 𝑅)

Proof of Theorem dfrel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5102 . . 3 Rel 𝑅
2 vex 2802 . . . . . 6 𝑥 ∈ V
3 vex 2802 . . . . . 6 𝑦 ∈ V
42, 3opelcnv 4901 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
53, 2opelcnv 4901 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
64, 5bitri 184 . . . 4 (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
76eqrelriv 4809 . . 3 ((Rel 𝑅 ∧ Rel 𝑅) → 𝑅 = 𝑅)
81, 7mpan 424 . 2 (Rel 𝑅𝑅 = 𝑅)
9 releq 4798 . . 3 (𝑅 = 𝑅 → (Rel 𝑅 ↔ Rel 𝑅))
101, 9mpbii 148 . 2 (𝑅 = 𝑅 → Rel 𝑅)
118, 10impbii 126 1 (Rel 𝑅𝑅 = 𝑅)
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1395  wcel 2200  cop 3669  ccnv 4715  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-rel 4723  df-cnv 4724
This theorem is referenced by:  dfrel4v  5176  cnvcnv  5177  cnveqb  5180  dfrel3  5182  cnvcnvres  5188  cnvsn  5207  cores2  5237  co01  5239  coi2  5241  relcnvtr  5244  relcnvexb  5264  funcnvres2  5392  f1cnvcnv  5538  f1ocnv  5581  f1ocnvb  5582  f1ococnv1  5597  isores1  5931  cnvf1o  6361  tposf12  6405  ssenen  7000  relcnvfi  7096  caseinl  7246  caseinr  7247  fsumcnv  11934  fprodcnv  12122  structcnvcnv  13034  hmeocnv  14966  hmeocnvb  14977
  Copyright terms: Public domain W3C validator