| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfrel2 | GIF version | ||
| Description: Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfrel2 | ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5048 | . . 3 ⊢ Rel ◡◡𝑅 | |
| 2 | vex 2766 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 3 | vex 2766 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | opelcnv 4849 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
| 5 | 3, 2 | opelcnv 4849 | . . . . 5 ⊢ (〈𝑦, 𝑥〉 ∈ ◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 6 | 4, 5 | bitri 184 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡◡𝑅 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) |
| 7 | 6 | eqrelriv 4757 | . . 3 ⊢ ((Rel ◡◡𝑅 ∧ Rel 𝑅) → ◡◡𝑅 = 𝑅) |
| 8 | 1, 7 | mpan 424 | . 2 ⊢ (Rel 𝑅 → ◡◡𝑅 = 𝑅) |
| 9 | releq 4746 | . . 3 ⊢ (◡◡𝑅 = 𝑅 → (Rel ◡◡𝑅 ↔ Rel 𝑅)) | |
| 10 | 1, 9 | mpbii 148 | . 2 ⊢ (◡◡𝑅 = 𝑅 → Rel 𝑅) |
| 11 | 8, 10 | impbii 126 | 1 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2167 〈cop 3626 ◡ccnv 4663 Rel wrel 4669 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 |
| This theorem is referenced by: dfrel4v 5122 cnvcnv 5123 cnveqb 5126 dfrel3 5128 cnvcnvres 5134 cnvsn 5153 cores2 5183 co01 5185 coi2 5187 relcnvtr 5190 relcnvexb 5210 funcnvres2 5334 f1cnvcnv 5477 f1ocnv 5520 f1ocnvb 5521 f1ococnv1 5536 isores1 5864 cnvf1o 6292 tposf12 6336 ssenen 6921 relcnvfi 7016 caseinl 7166 caseinr 7167 fsumcnv 11619 fprodcnv 11807 structcnvcnv 12719 hmeocnv 14627 hmeocnvb 14638 |
| Copyright terms: Public domain | W3C validator |