ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqd GIF version

Theorem releqd 4712
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
Hypothesis
Ref Expression
releqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
releqd (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releqd
StepHypRef Expression
1 releqd.1 . 2 (𝜑𝐴 = 𝐵)
2 releq 4710 . 2 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
31, 2syl 14 1 (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  Rel wrel 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144  df-rel 4635
This theorem is referenced by:  dftpos3  6265  tposfo2  6270  tposf12  6272  imasaddfnlemg  12740  releqgg  13085  dvdsrd  13268  isunitd  13280  lmreltop  13778  cnprcl2k  13791
  Copyright terms: Public domain W3C validator