ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releqd GIF version

Theorem releqd 4757
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
Hypothesis
Ref Expression
releqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
releqd (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releqd
StepHypRef Expression
1 releqd.1 . 2 (𝜑𝐴 = 𝐵)
2 releq 4755 . 2 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
31, 2syl 14 1 (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  Rel wrel 4678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-11 1528  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-in 3171  df-ss 3178  df-rel 4680
This theorem is referenced by:  dftpos3  6338  tposfo2  6343  tposf12  6345  imasaddfnlemg  13064  releqgg  13474  dvdsrd  13774  isunitd  13786  lmreltop  14583  cnprcl2k  14596
  Copyright terms: Public domain W3C validator