![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > releqd | GIF version |
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | releq 4741 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 Rel wrel 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 df-rel 4666 |
This theorem is referenced by: dftpos3 6315 tposfo2 6320 tposf12 6322 imasaddfnlemg 12897 releqgg 13290 dvdsrd 13590 isunitd 13602 lmreltop 14361 cnprcl2k 14374 |
Copyright terms: Public domain | W3C validator |