| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexb | GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4486 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | pwuni 4236 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 3 | pwexg 4224 | . . 3 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) | |
| 4 | ssexg 4183 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) |
| 6 | 1, 5 | impbii 126 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 𝒫 cpw 3616 ∪ cuni 3850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 |
| This theorem is referenced by: pwexb 4521 elpwpwel 4522 tfrlemibex 6415 tfr1onlembex 6431 tfrcllembex 6444 ixpexgg 6809 ptex 13096 tgss2 14551 txbasex 14729 |
| Copyright terms: Public domain | W3C validator |