ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexb GIF version

Theorem uniexb 4352
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb (𝐴 ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 4319 . 2 (𝐴 ∈ V → 𝐴 ∈ V)
2 pwuni 4074 . . 3 𝐴 ⊆ 𝒫 𝐴
3 pwexg 4062 . . 3 ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V)
4 ssexg 4025 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancr 408 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
61, 5impbii 125 1 (𝐴 ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wb 104  wcel 1461  Vcvv 2655  wss 3035  𝒫 cpw 3474   cuni 3700
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-un 4313
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-rex 2394  df-v 2657  df-in 3041  df-ss 3048  df-pw 3476  df-uni 3701
This theorem is referenced by:  pwexb  4353  elpwpwel  4354  tfrlemibex  6178  tfr1onlembex  6194  tfrcllembex  6207  ixpexgg  6568  tgss2  12085  txbasex  12262
  Copyright terms: Public domain W3C validator