| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexb | GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4485 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | pwuni 4235 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 3 | pwexg 4223 | . . 3 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) | |
| 4 | ssexg 4182 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) |
| 6 | 1, 5 | impbii 126 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2175 Vcvv 2771 ⊆ wss 3165 𝒫 cpw 3615 ∪ cuni 3849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-uni 3850 |
| This theorem is referenced by: pwexb 4520 elpwpwel 4521 tfrlemibex 6414 tfr1onlembex 6430 tfrcllembex 6443 ixpexgg 6808 ptex 13067 tgss2 14522 txbasex 14700 |
| Copyright terms: Public domain | W3C validator |