Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uniexb | GIF version |
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 4424 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | pwuni 4178 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | pwexg 4166 | . . 3 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) | |
4 | ssexg 4128 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | sylancr 412 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) |
6 | 1, 5 | impbii 125 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 𝒫 cpw 3566 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 |
This theorem is referenced by: pwexb 4459 elpwpwel 4460 tfrlemibex 6308 tfr1onlembex 6324 tfrcllembex 6337 ixpexgg 6700 tgss2 12873 txbasex 13051 |
Copyright terms: Public domain | W3C validator |