ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexb GIF version

Theorem uniexb 4519
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb (𝐴 ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 4485 . 2 (𝐴 ∈ V → 𝐴 ∈ V)
2 pwuni 4235 . . 3 𝐴 ⊆ 𝒫 𝐴
3 pwexg 4223 . . 3 ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V)
4 ssexg 4182 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancr 414 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
61, 5impbii 126 1 (𝐴 ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2175  Vcvv 2771  wss 3165  𝒫 cpw 3615   cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-uni 3850
This theorem is referenced by:  pwexb  4520  elpwpwel  4521  tfrlemibex  6414  tfr1onlembex  6430  tfrcllembex  6443  ixpexgg  6808  ptex  13038  tgss2  14493  txbasex  14671
  Copyright terms: Public domain W3C validator