ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniexb GIF version

Theorem uniexb 4563
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
uniexb (𝐴 ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem uniexb
StepHypRef Expression
1 uniexg 4529 . 2 (𝐴 ∈ V → 𝐴 ∈ V)
2 pwuni 4275 . . 3 𝐴 ⊆ 𝒫 𝐴
3 pwexg 4263 . . 3 ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V)
4 ssexg 4222 . . 3 ((𝐴 ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → 𝐴 ∈ V)
52, 3, 4sylancr 414 . 2 ( 𝐴 ∈ V → 𝐴 ∈ V)
61, 5impbii 126 1 (𝐴 ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649   cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3888
This theorem is referenced by:  pwexb  4564  elpwpwel  4565  tfrlemibex  6473  tfr1onlembex  6489  tfrcllembex  6502  ixpexgg  6867  ptex  13292  tgss2  14747  txbasex  14925
  Copyright terms: Public domain W3C validator