![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniexb | GIF version |
Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 4319 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
2 | pwuni 4074 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
3 | pwexg 4062 | . . 3 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) | |
4 | ssexg 4025 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | sylancr 408 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) |
6 | 1, 5 | impbii 125 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 1461 Vcvv 2655 ⊆ wss 3035 𝒫 cpw 3474 ∪ cuni 3700 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-sep 4004 ax-pow 4056 ax-un 4313 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-rex 2394 df-v 2657 df-in 3041 df-ss 3048 df-pw 3476 df-uni 3701 |
This theorem is referenced by: pwexb 4353 elpwpwel 4354 tfrlemibex 6178 tfr1onlembex 6194 tfrcllembex 6207 ixpexgg 6568 tgss2 12085 txbasex 12262 |
Copyright terms: Public domain | W3C validator |