| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uniexb | GIF version | ||
| Description: The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| uniexb | ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 4504 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝐴 ∈ V) | |
| 2 | pwuni 4252 | . . 3 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 3 | pwexg 4240 | . . 3 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ V) | |
| 4 | ssexg 4199 | . . 3 ⊢ ((𝐴 ⊆ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ∈ V) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | sylancr 414 | . 2 ⊢ (∪ 𝐴 ∈ V → 𝐴 ∈ V) |
| 6 | 1, 5 | impbii 126 | 1 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 𝒫 cpw 3626 ∪ cuni 3864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-pw 3628 df-uni 3865 |
| This theorem is referenced by: pwexb 4539 elpwpwel 4540 tfrlemibex 6438 tfr1onlembex 6454 tfrcllembex 6467 ixpexgg 6832 ptex 13211 tgss2 14666 txbasex 14844 |
| Copyright terms: Public domain | W3C validator |