ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqbi1dv GIF version

Theorem raleqbi1dv 2717
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
raleqd.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
raleqbi1dv (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raleqbi1dv
StepHypRef Expression
1 raleq 2705 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
2 raleqd.1 . . 3 (𝐴 = 𝐵 → (𝜑𝜓))
32ralbidv 2508 . 2 (𝐴 = 𝐵 → (∀𝑥𝐵 𝜑 ↔ ∀𝑥𝐵 𝜓))
41, 3bitrd 188 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  frforeq2  4410  weeq2  4422  peano5  4664  isoeq4  5896  exmidomni  7270  tapeq2  7400  pitonn  7996  peano1nnnn  8000  peano2nnnn  8001  peano5nnnn  8040  peano5nni  9074  1nn  9082  peano2nn  9083  dfuzi  9518  mhmpropd  13413  issubm  13419  isghm  13694  ghmeql  13718  iscmn  13744  dfrhm2  14031  islssm  14234  islssmg  14235  istopg  14586  isbasisg  14631  basis2  14635  eltg2  14640  ispsmet  14910  ismet  14931  isxmet  14932  metrest  15093  cncfval  15159  bj-indeq  16064  bj-nntrans  16086
  Copyright terms: Public domain W3C validator