| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbi1dv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2728 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralbidv 2530 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: frforeq2 4436 weeq2 4448 peano5 4690 isoeq4 5928 exmidomni 7309 tapeq2 7439 pitonn 8035 peano1nnnn 8039 peano2nnnn 8040 peano5nnnn 8079 peano5nni 9113 1nn 9121 peano2nn 9122 dfuzi 9557 mhmpropd 13499 issubm 13505 isghm 13780 ghmeql 13804 iscmn 13830 dfrhm2 14118 islssm 14321 islssmg 14322 istopg 14673 isbasisg 14718 basis2 14722 eltg2 14727 ispsmet 14997 ismet 15018 isxmet 15019 metrest 15180 cncfval 15246 bj-indeq 16292 bj-nntrans 16314 |
| Copyright terms: Public domain | W3C validator |