![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleqbi1dv | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2690 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralbidv 2494 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 |
This theorem is referenced by: frforeq2 4376 weeq2 4388 peano5 4630 isoeq4 5847 exmidomni 7201 tapeq2 7313 pitonn 7908 peano1nnnn 7912 peano2nnnn 7913 peano5nnnn 7952 peano5nni 8985 1nn 8993 peano2nn 8994 dfuzi 9427 mhmpropd 13038 issubm 13044 isghm 13313 ghmeql 13337 iscmn 13363 dfrhm2 13650 islssm 13853 islssmg 13854 istopg 14167 isbasisg 14212 basis2 14216 eltg2 14221 ispsmet 14491 ismet 14512 isxmet 14513 metrest 14674 cncfval 14727 bj-indeq 15421 bj-nntrans 15443 |
Copyright terms: Public domain | W3C validator |