ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqbi1dv GIF version

Theorem raleqbi1dv 2713
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
Hypothesis
Ref Expression
raleqd.1 (𝐴 = 𝐵 → (𝜑𝜓))
Assertion
Ref Expression
raleqbi1dv (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raleqbi1dv
StepHypRef Expression
1 raleq 2701 . 2 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
2 raleqd.1 . . 3 (𝐴 = 𝐵 → (𝜑𝜓))
32ralbidv 2505 . 2 (𝐴 = 𝐵 → (∀𝑥𝐵 𝜑 ↔ ∀𝑥𝐵 𝜓))
41, 3bitrd 188 1 (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1372  wral 2483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488
This theorem is referenced by:  frforeq2  4391  weeq2  4403  peano5  4645  isoeq4  5872  exmidomni  7243  tapeq2  7364  pitonn  7960  peano1nnnn  7964  peano2nnnn  7965  peano5nnnn  8004  peano5nni  9038  1nn  9046  peano2nn  9047  dfuzi  9482  mhmpropd  13269  issubm  13275  isghm  13550  ghmeql  13574  iscmn  13600  dfrhm2  13887  islssm  14090  islssmg  14091  istopg  14442  isbasisg  14487  basis2  14491  eltg2  14496  ispsmet  14766  ismet  14787  isxmet  14788  metrest  14949  cncfval  15015  bj-indeq  15827  bj-nntrans  15849
  Copyright terms: Public domain W3C validator