| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbi1dv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2693 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralbidv 2497 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: frforeq2 4381 weeq2 4393 peano5 4635 isoeq4 5854 exmidomni 7217 tapeq2 7338 pitonn 7934 peano1nnnn 7938 peano2nnnn 7939 peano5nnnn 7978 peano5nni 9012 1nn 9020 peano2nn 9021 dfuzi 9455 mhmpropd 13170 issubm 13176 isghm 13451 ghmeql 13475 iscmn 13501 dfrhm2 13788 islssm 13991 islssmg 13992 istopg 14343 isbasisg 14388 basis2 14392 eltg2 14397 ispsmet 14667 ismet 14688 isxmet 14689 metrest 14850 cncfval 14916 bj-indeq 15683 bj-nntrans 15705 |
| Copyright terms: Public domain | W3C validator |