Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleqbi1dv | GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2670 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralbidv 2475 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∀wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 |
This theorem is referenced by: frforeq2 4339 weeq2 4351 peano5 4591 isoeq4 5795 exmidomni 7130 pitonn 7822 peano1nnnn 7826 peano2nnnn 7827 peano5nnnn 7866 peano5nni 8895 1nn 8903 peano2nn 8904 dfuzi 9336 mhmpropd 12729 issubm 12735 iscmn 12904 istopg 13077 isbasisg 13122 basis2 13126 eltg2 13133 ispsmet 13403 ismet 13424 isxmet 13425 metrest 13586 cncfval 13639 bj-indeq 14250 bj-nntrans 14272 |
Copyright terms: Public domain | W3C validator |