| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleqbi1dv | GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleqd.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 2705 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 2 | raleqd.1 | . . 3 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralbidv 2508 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| 4 | 1, 3 | bitrd 188 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 |
| This theorem is referenced by: frforeq2 4410 weeq2 4422 peano5 4664 isoeq4 5896 exmidomni 7270 tapeq2 7400 pitonn 7996 peano1nnnn 8000 peano2nnnn 8001 peano5nnnn 8040 peano5nni 9074 1nn 9082 peano2nn 9083 dfuzi 9518 mhmpropd 13413 issubm 13419 isghm 13694 ghmeql 13718 iscmn 13744 dfrhm2 14031 islssm 14234 islssmg 14235 istopg 14586 isbasisg 14631 basis2 14635 eltg2 14640 ispsmet 14910 ismet 14931 isxmet 14932 metrest 15093 cncfval 15159 bj-indeq 16064 bj-nntrans 16086 |
| Copyright terms: Public domain | W3C validator |