ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg2exmid GIF version

Theorem reg2exmid 4628
Description: If any inhabited set has a minimal element (when expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
Hypothesis
Ref Expression
reg2exmid.1 𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
Assertion
Ref Expression
reg2exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑤,𝑧   𝜑,𝑥,𝑧,𝑦

Proof of Theorem reg2exmid
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . . 4 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
21regexmidlemm 4624 . . 3 𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
3 reg2exmid.1 . . . 4 𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
4 pp0ex 4273 . . . . . 6 {∅, {∅}} ∈ V
54rabex 4228 . . . . 5 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∈ V
6 eleq2 2293 . . . . . . 7 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (𝑤𝑧𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
76exbidv 1871 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
8 raleq 2728 . . . . . . 7 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∀𝑦𝑧 𝑥𝑦 ↔ ∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
98rexeqbi1dv 2741 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
107, 9imbi12d 234 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ((∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)))
115, 10spcv 2897 . . . 4 (∀𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦) → (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
123, 11ax-mp 5 . . 3 (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
132, 12ax-mp 5 . 2 𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦
141reg2exmidlema 4626 . 2 (∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦 → (𝜑 ∨ ¬ 𝜑))
1513, 14ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  wal 1393   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  wss 3197  c0 3491  {csn 3666  {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator