ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg2exmid GIF version

Theorem reg2exmid 4605
Description: If any inhabited set has a minimal element (when expressed by ), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
Hypothesis
Ref Expression
reg2exmid.1 𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
Assertion
Ref Expression
reg2exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑤,𝑧   𝜑,𝑥,𝑧,𝑦

Proof of Theorem reg2exmid
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . 4 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
21regexmidlemm 4601 . . 3 𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
3 reg2exmid.1 . . . 4 𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
4 pp0ex 4252 . . . . . 6 {∅, {∅}} ∈ V
54rabex 4207 . . . . 5 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∈ V
6 eleq2 2273 . . . . . . 7 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (𝑤𝑧𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
76exbidv 1851 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
8 raleq 2708 . . . . . . 7 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∀𝑦𝑧 𝑥𝑦 ↔ ∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
98rexeqbi1dv 2721 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
107, 9imbi12d 234 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ((∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)))
115, 10spcv 2877 . . . 4 (∀𝑧(∃𝑤 𝑤𝑧 → ∃𝑥𝑧𝑦𝑧 𝑥𝑦) → (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
123, 11ax-mp 5 . . 3 (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
132, 12ax-mp 5 . 2 𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦
141reg2exmidlema 4603 . 2 (∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦 → (𝜑 ∨ ¬ 𝜑))
1513, 14ax-mp 5 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 712  wal 1373   = wceq 1375  wex 1518  wcel 2180  wral 2488  wrex 2489  {crab 2492  wss 3177  c0 3471  {csn 3646  {cpr 3647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-nul 4189  ax-pow 4237
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator