ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reg3exmid GIF version

Theorem reg3exmid 4616
Description: If any inhabited set satisfying df-wetr 4369 for E has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Oct-2021.)
Hypothesis
Ref Expression
reg3exmid.1 (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
Assertion
Ref Expression
reg3exmid (𝜑 ∨ ¬ 𝜑)
Distinct variable groups:   𝜑,𝑤,𝑧   𝜑,𝑥,𝑦,𝑧

Proof of Theorem reg3exmid
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . 3 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
21regexmidlemm 4568 . 2 𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
31reg3exmidlemwe 4615 . . 3 E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}
4 pp0ex 4222 . . . . 5 {∅, {∅}} ∈ V
54rabex 4177 . . . 4 {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∈ V
6 weeq2 4392 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ( E We 𝑧 ↔ E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
7 eleq2 2260 . . . . . . 7 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (𝑤𝑧𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
87exbidv 1839 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑤 𝑤𝑧 ↔ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))
96, 8anbi12d 473 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) ↔ ( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))})))
10 raleq 2693 . . . . . 6 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∀𝑦𝑧 𝑥𝑦 ↔ ∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
1110rexeqbi1dv 2706 . . . . 5 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑥𝑧𝑦𝑧 𝑥𝑦 ↔ ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦))
129, 11imbi12d 234 . . . 4 (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ((( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦) ↔ (( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)))
13 reg3exmid.1 . . . 4 (( E We 𝑧 ∧ ∃𝑤 𝑤𝑧) → ∃𝑥𝑧𝑦𝑧 𝑥𝑦)
145, 12, 13vtocl 2818 . . 3 (( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
153, 14mpan 424 . 2 (∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦)
161reg2exmidlema 4570 . 2 (∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥𝑦 → (𝜑 ∨ ¬ 𝜑))
172, 15, 16mp2b 8 1 (𝜑 ∨ ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  wss 3157  c0 3450  {csn 3622  {cpr 3623   E cep 4322   We wwe 4365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-eprel 4324  df-frfor 4366  df-frind 4367  df-wetr 4369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator