Step | Hyp | Ref
| Expression |
1 | | eqid 2170 |
. . 3
⊢ {𝑢 ∈ {∅, {∅}}
∣ (𝑢 = {∅} ∨
(𝑢 = ∅ ∧ 𝜑))} = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} |
2 | 1 | regexmidlemm 4516 |
. 2
⊢
∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} |
3 | 1 | reg3exmidlemwe 4563 |
. . 3
⊢ E We
{𝑢 ∈ {∅,
{∅}} ∣ (𝑢 =
{∅} ∨ (𝑢 = ∅
∧ 𝜑))} |
4 | | pp0ex 4175 |
. . . . 5
⊢ {∅,
{∅}} ∈ V |
5 | 4 | rabex 4133 |
. . . 4
⊢ {𝑢 ∈ {∅, {∅}}
∣ (𝑢 = {∅} ∨
(𝑢 = ∅ ∧ 𝜑))} ∈ V |
6 | | weeq2 4342 |
. . . . . 6
⊢ (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ( E We 𝑧 ↔ E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))})) |
7 | | eleq2 2234 |
. . . . . . 7
⊢ (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))})) |
8 | 7 | exbidv 1818 |
. . . . . 6
⊢ (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑤 𝑤 ∈ 𝑧 ↔ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))})) |
9 | 6, 8 | anbi12d 470 |
. . . . 5
⊢ (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (( E We 𝑧 ∧ ∃𝑤 𝑤 ∈ 𝑧) ↔ ( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}))) |
10 | | raleq 2665 |
. . . . . 6
⊢ (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∀𝑦 ∈ 𝑧 𝑥 ⊆ 𝑦 ↔ ∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥 ⊆ 𝑦)) |
11 | 10 | rexeqbi1dv 2674 |
. . . . 5
⊢ (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → (∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 𝑥 ⊆ 𝑦 ↔ ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥 ⊆ 𝑦)) |
12 | 9, 11 | imbi12d 233 |
. . . 4
⊢ (𝑧 = {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ((( E We 𝑧 ∧ ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 𝑥 ⊆ 𝑦) ↔ (( E We {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥 ⊆ 𝑦))) |
13 | | reg3exmid.1 |
. . . 4
⊢ (( E We
𝑧 ∧ ∃𝑤 𝑤 ∈ 𝑧) → ∃𝑥 ∈ 𝑧 ∀𝑦 ∈ 𝑧 𝑥 ⊆ 𝑦) |
14 | 5, 12, 13 | vtocl 2784 |
. . 3
⊢ (( E We
{𝑢 ∈ {∅,
{∅}} ∣ (𝑢 =
{∅} ∨ (𝑢 = ∅
∧ 𝜑))} ∧ ∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}) → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥 ⊆ 𝑦) |
15 | 3, 14 | mpan 422 |
. 2
⊢
(∃𝑤 𝑤 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))} → ∃𝑥 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥 ⊆ 𝑦) |
16 | 1 | reg2exmidlema 4518 |
. 2
⊢
(∃𝑥 ∈
{𝑢 ∈ {∅,
{∅}} ∣ (𝑢 =
{∅} ∨ (𝑢 = ∅
∧ 𝜑))}∀𝑦 ∈ {𝑢 ∈ {∅, {∅}} ∣ (𝑢 = {∅} ∨ (𝑢 = ∅ ∧ 𝜑))}𝑥 ⊆ 𝑦 → (𝜑 ∨ ¬ 𝜑)) |
17 | 2, 15, 16 | mp2b 8 |
1
⊢ (𝜑 ∨ ¬ 𝜑) |