ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvpropdg GIF version

Theorem grpinvpropdg 13574
Description: If two structures have the same group components (properties), they have the same group inversion function. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Stefan O'Rear, 21-Mar-2015.)
Hypotheses
Ref Expression
grpinvpropd.1 (𝜑𝐵 = (Base‘𝐾))
grpinvpropd.2 (𝜑𝐵 = (Base‘𝐿))
grpinvpropdg.k (𝜑𝐾𝑉)
grpinvpropdg.l (𝜑𝐿𝑊)
grpinvpropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
Assertion
Ref Expression
grpinvpropdg (𝜑 → (invg𝐾) = (invg𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem grpinvpropdg
StepHypRef Expression
1 grpinvpropd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
2 grpinvpropd.1 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐾))
3 grpinvpropd.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐿))
4 grpinvpropdg.k . . . . . . . . 9 (𝜑𝐾𝑉)
5 grpinvpropdg.l . . . . . . . . 9 (𝜑𝐿𝑊)
62, 3, 4, 5, 1grpidpropdg 13373 . . . . . . . 8 (𝜑 → (0g𝐾) = (0g𝐿))
76adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (0g𝐾) = (0g𝐿))
81, 7eqeq12d 2224 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
98anass1rs 571 . . . . 5 (((𝜑𝑦𝐵) ∧ 𝑥𝐵) → ((𝑥(+g𝐾)𝑦) = (0g𝐾) ↔ (𝑥(+g𝐿)𝑦) = (0g𝐿)))
109riotabidva 5945 . . . 4 ((𝜑𝑦𝐵) → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)))
1110mpteq2dva 4153 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))))
122riotaeqdv 5928 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾)) = (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾)))
132, 12mpteq12dv 4145 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))))
143riotaeqdv 5928 . . . 4 (𝜑 → (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿)) = (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿)))
153, 14mpteq12dv 4145 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑥𝐵 (𝑥(+g𝐿)𝑦) = (0g𝐿))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
1611, 13, 153eqtr3d 2250 . 2 (𝜑 → (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
17 eqid 2209 . . . 4 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2209 . . . 4 (+g𝐾) = (+g𝐾)
19 eqid 2209 . . . 4 (0g𝐾) = (0g𝐾)
20 eqid 2209 . . . 4 (invg𝐾) = (invg𝐾)
2117, 18, 19, 20grpinvfvalg 13541 . . 3 (𝐾𝑉 → (invg𝐾) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))))
224, 21syl 14 . 2 (𝜑 → (invg𝐾) = (𝑦 ∈ (Base‘𝐾) ↦ (𝑥 ∈ (Base‘𝐾)(𝑥(+g𝐾)𝑦) = (0g𝐾))))
23 eqid 2209 . . . 4 (Base‘𝐿) = (Base‘𝐿)
24 eqid 2209 . . . 4 (+g𝐿) = (+g𝐿)
25 eqid 2209 . . . 4 (0g𝐿) = (0g𝐿)
26 eqid 2209 . . . 4 (invg𝐿) = (invg𝐿)
2723, 24, 25, 26grpinvfvalg 13541 . . 3 (𝐿𝑊 → (invg𝐿) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
285, 27syl 14 . 2 (𝜑 → (invg𝐿) = (𝑦 ∈ (Base‘𝐿) ↦ (𝑥 ∈ (Base‘𝐿)(𝑥(+g𝐿)𝑦) = (0g𝐿))))
2916, 22, 283eqtr4d 2252 1 (𝜑 → (invg𝐾) = (invg𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  cmpt 4124  cfv 5294  crio 5926  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  0gc0g 13255  invgcminusg 13500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-0g 13257  df-minusg 13503
This theorem is referenced by:  grpsubpropdg  13603  grpsubpropd2  13604  mulgpropdg  13667  invrpropdg  14078  rlmvnegg  14394
  Copyright terms: Public domain W3C validator