ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4fvwrd4 GIF version

Theorem 4fvwrd4 10232
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4fvwrd4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Distinct variable groups:   𝑃,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝐿(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem 4fvwrd4
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 𝑃:(0...𝐿)⟶𝑉)
2 0nn0 9281 . . . . . . . . 9 0 ∈ ℕ0
3 elnn0uz 9656 . . . . . . . . 9 (0 ∈ ℕ0 ↔ 0 ∈ (ℤ‘0))
42, 3mpbi 145 . . . . . . . 8 0 ∈ (ℤ‘0)
5 3nn0 9284 . . . . . . . . . . 11 3 ∈ ℕ0
6 elnn0uz 9656 . . . . . . . . . . 11 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
75, 6mpbi 145 . . . . . . . . . 10 3 ∈ (ℤ‘0)
8 uzss 9639 . . . . . . . . . 10 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
97, 8ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘0)
109sseli 3180 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘0))
11 eluzfz 10112 . . . . . . . 8 ((0 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘0)) → 0 ∈ (0...𝐿))
124, 10, 11sylancr 414 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 0 ∈ (0...𝐿))
1312adantr 276 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 0 ∈ (0...𝐿))
141, 13ffvelcdmd 5701 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘0) ∈ 𝑉)
15 risset 2525 . . . . . 6 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 𝑎 = (𝑃‘0))
16 eqcom 2198 . . . . . . 7 (𝑎 = (𝑃‘0) ↔ (𝑃‘0) = 𝑎)
1716rexbii 2504 . . . . . 6 (∃𝑎𝑉 𝑎 = (𝑃‘0) ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1815, 17bitri 184 . . . . 5 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1914, 18sylib 122 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉 (𝑃‘0) = 𝑎)
20 1eluzge0 9665 . . . . . . . 8 1 ∈ (ℤ‘0)
21 1z 9369 . . . . . . . . . . 11 1 ∈ ℤ
22 3z 9372 . . . . . . . . . . 11 3 ∈ ℤ
23 1le3 9219 . . . . . . . . . . 11 1 ≤ 3
24 eluz2 9624 . . . . . . . . . . 11 (3 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 1 ≤ 3))
2521, 22, 23, 24mpbir3an 1181 . . . . . . . . . 10 3 ∈ (ℤ‘1)
26 uzss 9639 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → (ℤ‘3) ⊆ (ℤ‘1))
2725, 26ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘1)
2827sseli 3180 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘1))
29 eluzfz 10112 . . . . . . . 8 ((1 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘1)) → 1 ∈ (0...𝐿))
3020, 28, 29sylancr 414 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 1 ∈ (0...𝐿))
3130adantr 276 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 1 ∈ (0...𝐿))
321, 31ffvelcdmd 5701 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
33 risset 2525 . . . . . 6 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 𝑏 = (𝑃‘1))
34 eqcom 2198 . . . . . . 7 (𝑏 = (𝑃‘1) ↔ (𝑃‘1) = 𝑏)
3534rexbii 2504 . . . . . 6 (∃𝑏𝑉 𝑏 = (𝑃‘1) ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3633, 35bitri 184 . . . . 5 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3732, 36sylib 122 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3819, 37jca 306 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
39 2eluzge0 9666 . . . . . . 7 2 ∈ (ℤ‘0)
40 uzuzle23 9662 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘2))
41 eluzfz 10112 . . . . . . 7 ((2 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘2)) → 2 ∈ (0...𝐿))
4239, 40, 41sylancr 414 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 2 ∈ (0...𝐿))
4342adantr 276 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 2 ∈ (0...𝐿))
441, 43ffvelcdmd 5701 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
45 risset 2525 . . . . 5 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 𝑐 = (𝑃‘2))
46 eqcom 2198 . . . . . 6 (𝑐 = (𝑃‘2) ↔ (𝑃‘2) = 𝑐)
4746rexbii 2504 . . . . 5 (∃𝑐𝑉 𝑐 = (𝑃‘2) ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4845, 47bitri 184 . . . 4 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4944, 48sylib 122 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑐𝑉 (𝑃‘2) = 𝑐)
50 eluzfz 10112 . . . . . . 7 ((3 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘3)) → 3 ∈ (0...𝐿))
517, 50mpan 424 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 3 ∈ (0...𝐿))
5251adantr 276 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 3 ∈ (0...𝐿))
531, 52ffvelcdmd 5701 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘3) ∈ 𝑉)
54 risset 2525 . . . . 5 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 𝑑 = (𝑃‘3))
55 eqcom 2198 . . . . . 6 (𝑑 = (𝑃‘3) ↔ (𝑃‘3) = 𝑑)
5655rexbii 2504 . . . . 5 (∃𝑑𝑉 𝑑 = (𝑃‘3) ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5754, 56bitri 184 . . . 4 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5853, 57sylib 122 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5938, 49, 58jca32 310 . 2 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
60 r19.42v 2654 . . . . . 6 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
61 r19.42v 2654 . . . . . . 7 (∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) ↔ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
6261anbi2i 457 . . . . . 6 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6360, 62bitri 184 . . . . 5 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6463rexbii 2504 . . . 4 (∃𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
65642rexbii 2506 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
66 r19.42v 2654 . . . . 5 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
67 r19.41v 2653 . . . . . 6 (∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑) ↔ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
6867anbi2i 457 . . . . 5 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6966, 68bitri 184 . . . 4 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
70692rexbii 2506 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
71 r19.41v 2653 . . . . . 6 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
72 r19.42v 2654 . . . . . . 7 (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ↔ ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
7372anbi1i 458 . . . . . 6 ((∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7471, 73bitri 184 . . . . 5 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7574rexbii 2504 . . . 4 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
76 r19.41v 2653 . . . 4 (∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
77 r19.41v 2653 . . . . 5 (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ↔ (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
7877anbi1i 458 . . . 4 ((∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7975, 76, 783bitri 206 . . 3 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
8065, 70, 793bitri 206 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
8159, 80sylibr 134 1 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  wss 3157   class class class wbr 4034  wf 5255  cfv 5259  (class class class)co 5925  0cc0 7896  1c1 7897  cle 8079  2c2 9058  3c3 9059  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator