ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4fvwrd4 GIF version

Theorem 4fvwrd4 10096
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4fvwrd4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Distinct variable groups:   𝑃,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝐿(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem 4fvwrd4
StepHypRef Expression
1 simpr 109 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 𝑃:(0...𝐿)⟶𝑉)
2 0nn0 9150 . . . . . . . . 9 0 ∈ ℕ0
3 elnn0uz 9524 . . . . . . . . 9 (0 ∈ ℕ0 ↔ 0 ∈ (ℤ‘0))
42, 3mpbi 144 . . . . . . . 8 0 ∈ (ℤ‘0)
5 3nn0 9153 . . . . . . . . . . 11 3 ∈ ℕ0
6 elnn0uz 9524 . . . . . . . . . . 11 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
75, 6mpbi 144 . . . . . . . . . 10 3 ∈ (ℤ‘0)
8 uzss 9507 . . . . . . . . . 10 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
97, 8ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘0)
109sseli 3143 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘0))
11 eluzfz 9976 . . . . . . . 8 ((0 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘0)) → 0 ∈ (0...𝐿))
124, 10, 11sylancr 412 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 0 ∈ (0...𝐿))
1312adantr 274 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 0 ∈ (0...𝐿))
141, 13ffvelrnd 5632 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘0) ∈ 𝑉)
15 risset 2498 . . . . . 6 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 𝑎 = (𝑃‘0))
16 eqcom 2172 . . . . . . 7 (𝑎 = (𝑃‘0) ↔ (𝑃‘0) = 𝑎)
1716rexbii 2477 . . . . . 6 (∃𝑎𝑉 𝑎 = (𝑃‘0) ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1815, 17bitri 183 . . . . 5 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1914, 18sylib 121 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉 (𝑃‘0) = 𝑎)
20 1eluzge0 9533 . . . . . . . 8 1 ∈ (ℤ‘0)
21 1z 9238 . . . . . . . . . . 11 1 ∈ ℤ
22 3z 9241 . . . . . . . . . . 11 3 ∈ ℤ
23 1le3 9089 . . . . . . . . . . 11 1 ≤ 3
24 eluz2 9493 . . . . . . . . . . 11 (3 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 1 ≤ 3))
2521, 22, 23, 24mpbir3an 1174 . . . . . . . . . 10 3 ∈ (ℤ‘1)
26 uzss 9507 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → (ℤ‘3) ⊆ (ℤ‘1))
2725, 26ax-mp 5 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘1)
2827sseli 3143 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘1))
29 eluzfz 9976 . . . . . . . 8 ((1 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘1)) → 1 ∈ (0...𝐿))
3020, 28, 29sylancr 412 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 1 ∈ (0...𝐿))
3130adantr 274 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 1 ∈ (0...𝐿))
321, 31ffvelrnd 5632 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
33 risset 2498 . . . . . 6 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 𝑏 = (𝑃‘1))
34 eqcom 2172 . . . . . . 7 (𝑏 = (𝑃‘1) ↔ (𝑃‘1) = 𝑏)
3534rexbii 2477 . . . . . 6 (∃𝑏𝑉 𝑏 = (𝑃‘1) ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3633, 35bitri 183 . . . . 5 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3732, 36sylib 121 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3819, 37jca 304 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
39 2eluzge0 9534 . . . . . . 7 2 ∈ (ℤ‘0)
40 uzuzle23 9530 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘2))
41 eluzfz 9976 . . . . . . 7 ((2 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘2)) → 2 ∈ (0...𝐿))
4239, 40, 41sylancr 412 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 2 ∈ (0...𝐿))
4342adantr 274 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 2 ∈ (0...𝐿))
441, 43ffvelrnd 5632 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
45 risset 2498 . . . . 5 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 𝑐 = (𝑃‘2))
46 eqcom 2172 . . . . . 6 (𝑐 = (𝑃‘2) ↔ (𝑃‘2) = 𝑐)
4746rexbii 2477 . . . . 5 (∃𝑐𝑉 𝑐 = (𝑃‘2) ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4845, 47bitri 183 . . . 4 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4944, 48sylib 121 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑐𝑉 (𝑃‘2) = 𝑐)
50 eluzfz 9976 . . . . . . 7 ((3 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘3)) → 3 ∈ (0...𝐿))
517, 50mpan 422 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 3 ∈ (0...𝐿))
5251adantr 274 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 3 ∈ (0...𝐿))
531, 52ffvelrnd 5632 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘3) ∈ 𝑉)
54 risset 2498 . . . . 5 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 𝑑 = (𝑃‘3))
55 eqcom 2172 . . . . . 6 (𝑑 = (𝑃‘3) ↔ (𝑃‘3) = 𝑑)
5655rexbii 2477 . . . . 5 (∃𝑑𝑉 𝑑 = (𝑃‘3) ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5754, 56bitri 183 . . . 4 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5853, 57sylib 121 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5938, 49, 58jca32 308 . 2 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
60 r19.42v 2627 . . . . . 6 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
61 r19.42v 2627 . . . . . . 7 (∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) ↔ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
6261anbi2i 454 . . . . . 6 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6360, 62bitri 183 . . . . 5 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6463rexbii 2477 . . . 4 (∃𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
65642rexbii 2479 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
66 r19.42v 2627 . . . . 5 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
67 r19.41v 2626 . . . . . 6 (∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑) ↔ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
6867anbi2i 454 . . . . 5 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6966, 68bitri 183 . . . 4 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
70692rexbii 2479 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
71 r19.41v 2626 . . . . . 6 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
72 r19.42v 2627 . . . . . . 7 (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ↔ ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
7372anbi1i 455 . . . . . 6 ((∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7471, 73bitri 183 . . . . 5 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7574rexbii 2477 . . . 4 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
76 r19.41v 2626 . . . 4 (∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
77 r19.41v 2626 . . . . 5 (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ↔ (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
7877anbi1i 455 . . . 4 ((∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7975, 76, 783bitri 205 . . 3 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
8065, 70, 793bitri 205 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
8159, 80sylibr 133 1 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wrex 2449  wss 3121   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  0cc0 7774  1c1 7775  cle 7955  2c2 8929  3c3 8930  0cn0 9135  cz 9212  cuz 9487  ...cfz 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-2 8937  df-3 8938  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator