ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4fvwrd4 GIF version

Theorem 4fvwrd4 9810
Description: The first four function values of a word of length at least 4. (Contributed by Alexander van der Vekens, 18-Nov-2017.)
Assertion
Ref Expression
4fvwrd4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Distinct variable groups:   𝑃,𝑎,𝑏,𝑐,𝑑   𝑉,𝑎,𝑏,𝑐,𝑑
Allowed substitution hints:   𝐿(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem 4fvwrd4
StepHypRef Expression
1 simpr 109 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 𝑃:(0...𝐿)⟶𝑉)
2 0nn0 8896 . . . . . . . . 9 0 ∈ ℕ0
3 elnn0uz 9265 . . . . . . . . 9 (0 ∈ ℕ0 ↔ 0 ∈ (ℤ‘0))
42, 3mpbi 144 . . . . . . . 8 0 ∈ (ℤ‘0)
5 3nn0 8899 . . . . . . . . . . 11 3 ∈ ℕ0
6 elnn0uz 9265 . . . . . . . . . . 11 (3 ∈ ℕ0 ↔ 3 ∈ (ℤ‘0))
75, 6mpbi 144 . . . . . . . . . 10 3 ∈ (ℤ‘0)
8 uzss 9248 . . . . . . . . . 10 (3 ∈ (ℤ‘0) → (ℤ‘3) ⊆ (ℤ‘0))
97, 8ax-mp 7 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘0)
109sseli 3059 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘0))
11 eluzfz 9694 . . . . . . . 8 ((0 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘0)) → 0 ∈ (0...𝐿))
124, 10, 11sylancr 408 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 0 ∈ (0...𝐿))
1312adantr 272 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 0 ∈ (0...𝐿))
141, 13ffvelrnd 5510 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘0) ∈ 𝑉)
15 risset 2437 . . . . . 6 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 𝑎 = (𝑃‘0))
16 eqcom 2117 . . . . . . 7 (𝑎 = (𝑃‘0) ↔ (𝑃‘0) = 𝑎)
1716rexbii 2416 . . . . . 6 (∃𝑎𝑉 𝑎 = (𝑃‘0) ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1815, 17bitri 183 . . . . 5 ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎𝑉 (𝑃‘0) = 𝑎)
1914, 18sylib 121 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉 (𝑃‘0) = 𝑎)
20 1eluzge0 9271 . . . . . . . 8 1 ∈ (ℤ‘0)
21 1z 8984 . . . . . . . . . . 11 1 ∈ ℤ
22 3z 8987 . . . . . . . . . . 11 3 ∈ ℤ
23 1le3 8835 . . . . . . . . . . 11 1 ≤ 3
24 eluz2 9234 . . . . . . . . . . 11 (3 ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ 3 ∈ ℤ ∧ 1 ≤ 3))
2521, 22, 23, 24mpbir3an 1146 . . . . . . . . . 10 3 ∈ (ℤ‘1)
26 uzss 9248 . . . . . . . . . 10 (3 ∈ (ℤ‘1) → (ℤ‘3) ⊆ (ℤ‘1))
2725, 26ax-mp 7 . . . . . . . . 9 (ℤ‘3) ⊆ (ℤ‘1)
2827sseli 3059 . . . . . . . 8 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘1))
29 eluzfz 9694 . . . . . . . 8 ((1 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘1)) → 1 ∈ (0...𝐿))
3020, 28, 29sylancr 408 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 1 ∈ (0...𝐿))
3130adantr 272 . . . . . 6 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 1 ∈ (0...𝐿))
321, 31ffvelrnd 5510 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘1) ∈ 𝑉)
33 risset 2437 . . . . . 6 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 𝑏 = (𝑃‘1))
34 eqcom 2117 . . . . . . 7 (𝑏 = (𝑃‘1) ↔ (𝑃‘1) = 𝑏)
3534rexbii 2416 . . . . . 6 (∃𝑏𝑉 𝑏 = (𝑃‘1) ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3633, 35bitri 183 . . . . 5 ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3732, 36sylib 121 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑏𝑉 (𝑃‘1) = 𝑏)
3819, 37jca 302 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
39 2eluzge0 9272 . . . . . . 7 2 ∈ (ℤ‘0)
40 uzuzle23 9268 . . . . . . 7 (𝐿 ∈ (ℤ‘3) → 𝐿 ∈ (ℤ‘2))
41 eluzfz 9694 . . . . . . 7 ((2 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘2)) → 2 ∈ (0...𝐿))
4239, 40, 41sylancr 408 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 2 ∈ (0...𝐿))
4342adantr 272 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 2 ∈ (0...𝐿))
441, 43ffvelrnd 5510 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘2) ∈ 𝑉)
45 risset 2437 . . . . 5 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 𝑐 = (𝑃‘2))
46 eqcom 2117 . . . . . 6 (𝑐 = (𝑃‘2) ↔ (𝑃‘2) = 𝑐)
4746rexbii 2416 . . . . 5 (∃𝑐𝑉 𝑐 = (𝑃‘2) ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4845, 47bitri 183 . . . 4 ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐𝑉 (𝑃‘2) = 𝑐)
4944, 48sylib 121 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑐𝑉 (𝑃‘2) = 𝑐)
50 eluzfz 9694 . . . . . . 7 ((3 ∈ (ℤ‘0) ∧ 𝐿 ∈ (ℤ‘3)) → 3 ∈ (0...𝐿))
517, 50mpan 418 . . . . . 6 (𝐿 ∈ (ℤ‘3) → 3 ∈ (0...𝐿))
5251adantr 272 . . . . 5 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 3 ∈ (0...𝐿))
531, 52ffvelrnd 5510 . . . 4 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘3) ∈ 𝑉)
54 risset 2437 . . . . 5 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 𝑑 = (𝑃‘3))
55 eqcom 2117 . . . . . 6 (𝑑 = (𝑃‘3) ↔ (𝑃‘3) = 𝑑)
5655rexbii 2416 . . . . 5 (∃𝑑𝑉 𝑑 = (𝑃‘3) ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5754, 56bitri 183 . . . 4 ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5853, 57sylib 121 . . 3 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑑𝑉 (𝑃‘3) = 𝑑)
5938, 49, 58jca32 306 . 2 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
60 r19.42v 2562 . . . . . 6 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
61 r19.42v 2562 . . . . . . 7 (∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) ↔ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
6261anbi2i 450 . . . . . 6 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6360, 62bitri 183 . . . . 5 (∃𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6463rexbii 2416 . . . 4 (∃𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
65642rexbii 2418 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
66 r19.42v 2562 . . . . 5 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
67 r19.41v 2561 . . . . . 6 (∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑) ↔ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑))
6867anbi2i 450 . . . . 5 ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
6966, 68bitri 183 . . . 4 (∃𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
70692rexbii 2418 . . 3 (∃𝑎𝑉𝑏𝑉𝑐𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
71 r19.41v 2561 . . . . . 6 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
72 r19.42v 2562 . . . . . . 7 (∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ↔ ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
7372anbi1i 451 . . . . . 6 ((∃𝑏𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7471, 73bitri 183 . . . . 5 (∃𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7574rexbii 2416 . . . 4 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
76 r19.41v 2561 . . . 4 (∃𝑎𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
77 r19.41v 2561 . . . . 5 (∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ↔ (∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏))
7877anbi1i 451 . . . 4 ((∃𝑎𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
7975, 76, 783bitri 205 . . 3 (∃𝑎𝑉𝑏𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
8065, 70, 793bitri 205 . 2 (∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ((∃𝑎𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑𝑉 (𝑃‘3) = 𝑑)))
8159, 80sylibr 133 1 ((𝐿 ∈ (ℤ‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎𝑉𝑏𝑉𝑐𝑉𝑑𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1314  wcel 1463  wrex 2391  wss 3037   class class class wbr 3895  wf 5077  cfv 5081  (class class class)co 5728  0cc0 7547  1c1 7548  cle 7725  2c2 8681  3c3 8682  0cn0 8881  cz 8958  cuz 9228  ...cfz 9683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-2 8689  df-3 8690  df-n0 8882  df-z 8959  df-uz 9229  df-fz 9684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator