Proof of Theorem 4fvwrd4
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 110 |
. . . . . 6
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 𝑃:(0...𝐿)⟶𝑉) |
| 2 | | 0nn0 9281 |
. . . . . . . . 9
⊢ 0 ∈
ℕ0 |
| 3 | | elnn0uz 9656 |
. . . . . . . . 9
⊢ (0 ∈
ℕ0 ↔ 0 ∈
(ℤ≥‘0)) |
| 4 | 2, 3 | mpbi 145 |
. . . . . . . 8
⊢ 0 ∈
(ℤ≥‘0) |
| 5 | | 3nn0 9284 |
. . . . . . . . . . 11
⊢ 3 ∈
ℕ0 |
| 6 | | elnn0uz 9656 |
. . . . . . . . . . 11
⊢ (3 ∈
ℕ0 ↔ 3 ∈
(ℤ≥‘0)) |
| 7 | 5, 6 | mpbi 145 |
. . . . . . . . . 10
⊢ 3 ∈
(ℤ≥‘0) |
| 8 | | uzss 9639 |
. . . . . . . . . 10
⊢ (3 ∈
(ℤ≥‘0) → (ℤ≥‘3)
⊆ (ℤ≥‘0)) |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . 9
⊢
(ℤ≥‘3) ⊆
(ℤ≥‘0) |
| 10 | 9 | sseli 3180 |
. . . . . . . 8
⊢ (𝐿 ∈
(ℤ≥‘3) → 𝐿 ∈
(ℤ≥‘0)) |
| 11 | | eluzfz 10112 |
. . . . . . . 8
⊢ ((0
∈ (ℤ≥‘0) ∧ 𝐿 ∈ (ℤ≥‘0))
→ 0 ∈ (0...𝐿)) |
| 12 | 4, 10, 11 | sylancr 414 |
. . . . . . 7
⊢ (𝐿 ∈
(ℤ≥‘3) → 0 ∈ (0...𝐿)) |
| 13 | 12 | adantr 276 |
. . . . . 6
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 0 ∈ (0...𝐿)) |
| 14 | 1, 13 | ffvelcdmd 5701 |
. . . . 5
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘0) ∈ 𝑉) |
| 15 | | risset 2525 |
. . . . . 6
⊢ ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎 ∈ 𝑉 𝑎 = (𝑃‘0)) |
| 16 | | eqcom 2198 |
. . . . . . 7
⊢ (𝑎 = (𝑃‘0) ↔ (𝑃‘0) = 𝑎) |
| 17 | 16 | rexbii 2504 |
. . . . . 6
⊢
(∃𝑎 ∈
𝑉 𝑎 = (𝑃‘0) ↔ ∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎) |
| 18 | 15, 17 | bitri 184 |
. . . . 5
⊢ ((𝑃‘0) ∈ 𝑉 ↔ ∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎) |
| 19 | 14, 18 | sylib 122 |
. . . 4
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎) |
| 20 | | 1eluzge0 9665 |
. . . . . . . 8
⊢ 1 ∈
(ℤ≥‘0) |
| 21 | | 1z 9369 |
. . . . . . . . . . 11
⊢ 1 ∈
ℤ |
| 22 | | 3z 9372 |
. . . . . . . . . . 11
⊢ 3 ∈
ℤ |
| 23 | | 1le3 9219 |
. . . . . . . . . . 11
⊢ 1 ≤
3 |
| 24 | | eluz2 9624 |
. . . . . . . . . . 11
⊢ (3 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 3 ∈
ℤ ∧ 1 ≤ 3)) |
| 25 | 21, 22, 23, 24 | mpbir3an 1181 |
. . . . . . . . . 10
⊢ 3 ∈
(ℤ≥‘1) |
| 26 | | uzss 9639 |
. . . . . . . . . 10
⊢ (3 ∈
(ℤ≥‘1) → (ℤ≥‘3)
⊆ (ℤ≥‘1)) |
| 27 | 25, 26 | ax-mp 5 |
. . . . . . . . 9
⊢
(ℤ≥‘3) ⊆
(ℤ≥‘1) |
| 28 | 27 | sseli 3180 |
. . . . . . . 8
⊢ (𝐿 ∈
(ℤ≥‘3) → 𝐿 ∈
(ℤ≥‘1)) |
| 29 | | eluzfz 10112 |
. . . . . . . 8
⊢ ((1
∈ (ℤ≥‘0) ∧ 𝐿 ∈ (ℤ≥‘1))
→ 1 ∈ (0...𝐿)) |
| 30 | 20, 28, 29 | sylancr 414 |
. . . . . . 7
⊢ (𝐿 ∈
(ℤ≥‘3) → 1 ∈ (0...𝐿)) |
| 31 | 30 | adantr 276 |
. . . . . 6
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 1 ∈ (0...𝐿)) |
| 32 | 1, 31 | ffvelcdmd 5701 |
. . . . 5
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘1) ∈ 𝑉) |
| 33 | | risset 2525 |
. . . . . 6
⊢ ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏 ∈ 𝑉 𝑏 = (𝑃‘1)) |
| 34 | | eqcom 2198 |
. . . . . . 7
⊢ (𝑏 = (𝑃‘1) ↔ (𝑃‘1) = 𝑏) |
| 35 | 34 | rexbii 2504 |
. . . . . 6
⊢
(∃𝑏 ∈
𝑉 𝑏 = (𝑃‘1) ↔ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) |
| 36 | 33, 35 | bitri 184 |
. . . . 5
⊢ ((𝑃‘1) ∈ 𝑉 ↔ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) |
| 37 | 32, 36 | sylib 122 |
. . . 4
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) |
| 38 | 19, 37 | jca 306 |
. . 3
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏)) |
| 39 | | 2eluzge0 9666 |
. . . . . . 7
⊢ 2 ∈
(ℤ≥‘0) |
| 40 | | uzuzle23 9662 |
. . . . . . 7
⊢ (𝐿 ∈
(ℤ≥‘3) → 𝐿 ∈
(ℤ≥‘2)) |
| 41 | | eluzfz 10112 |
. . . . . . 7
⊢ ((2
∈ (ℤ≥‘0) ∧ 𝐿 ∈ (ℤ≥‘2))
→ 2 ∈ (0...𝐿)) |
| 42 | 39, 40, 41 | sylancr 414 |
. . . . . 6
⊢ (𝐿 ∈
(ℤ≥‘3) → 2 ∈ (0...𝐿)) |
| 43 | 42 | adantr 276 |
. . . . 5
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 2 ∈ (0...𝐿)) |
| 44 | 1, 43 | ffvelcdmd 5701 |
. . . 4
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘2) ∈ 𝑉) |
| 45 | | risset 2525 |
. . . . 5
⊢ ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐 ∈ 𝑉 𝑐 = (𝑃‘2)) |
| 46 | | eqcom 2198 |
. . . . . 6
⊢ (𝑐 = (𝑃‘2) ↔ (𝑃‘2) = 𝑐) |
| 47 | 46 | rexbii 2504 |
. . . . 5
⊢
(∃𝑐 ∈
𝑉 𝑐 = (𝑃‘2) ↔ ∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐) |
| 48 | 45, 47 | bitri 184 |
. . . 4
⊢ ((𝑃‘2) ∈ 𝑉 ↔ ∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐) |
| 49 | 44, 48 | sylib 122 |
. . 3
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐) |
| 50 | | eluzfz 10112 |
. . . . . . 7
⊢ ((3
∈ (ℤ≥‘0) ∧ 𝐿 ∈ (ℤ≥‘3))
→ 3 ∈ (0...𝐿)) |
| 51 | 7, 50 | mpan 424 |
. . . . . 6
⊢ (𝐿 ∈
(ℤ≥‘3) → 3 ∈ (0...𝐿)) |
| 52 | 51 | adantr 276 |
. . . . 5
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → 3 ∈ (0...𝐿)) |
| 53 | 1, 52 | ffvelcdmd 5701 |
. . . 4
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → (𝑃‘3) ∈ 𝑉) |
| 54 | | risset 2525 |
. . . . 5
⊢ ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑 ∈ 𝑉 𝑑 = (𝑃‘3)) |
| 55 | | eqcom 2198 |
. . . . . 6
⊢ (𝑑 = (𝑃‘3) ↔ (𝑃‘3) = 𝑑) |
| 56 | 55 | rexbii 2504 |
. . . . 5
⊢
(∃𝑑 ∈
𝑉 𝑑 = (𝑃‘3) ↔ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑) |
| 57 | 54, 56 | bitri 184 |
. . . 4
⊢ ((𝑃‘3) ∈ 𝑉 ↔ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑) |
| 58 | 53, 57 | sylib 122 |
. . 3
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑) |
| 59 | 38, 49, 58 | jca32 310 |
. 2
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ((∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 60 | | r19.42v 2654 |
. . . . . 6
⊢
(∃𝑑 ∈
𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑 ∈ 𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) |
| 61 | | r19.42v 2654 |
. . . . . . 7
⊢
(∃𝑑 ∈
𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑) ↔ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) |
| 62 | 61 | anbi2i 457 |
. . . . . 6
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑑 ∈ 𝑉 ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 63 | 60, 62 | bitri 184 |
. . . . 5
⊢
(∃𝑑 ∈
𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 64 | 63 | rexbii 2504 |
. . . 4
⊢
(∃𝑐 ∈
𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑐 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 65 | 64 | 2rexbii 2506 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 66 | | r19.42v 2654 |
. . . . 5
⊢
(∃𝑐 ∈
𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐 ∈ 𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 67 | | r19.41v 2653 |
. . . . . 6
⊢
(∃𝑐 ∈
𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑) ↔ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) |
| 68 | 67 | anbi2i 457 |
. . . . 5
⊢ ((((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ∃𝑐 ∈ 𝑉 ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 69 | 66, 68 | bitri 184 |
. . . 4
⊢
(∃𝑐 ∈
𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 70 | 69 | 2rexbii 2506 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 71 | | r19.41v 2653 |
. . . . . 6
⊢
(∃𝑏 ∈
𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑏 ∈ 𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 72 | | r19.42v 2654 |
. . . . . . 7
⊢
(∃𝑏 ∈
𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ↔ ((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏)) |
| 73 | 72 | anbi1i 458 |
. . . . . 6
⊢
((∃𝑏 ∈
𝑉 ((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 74 | 71, 73 | bitri 184 |
. . . . 5
⊢
(∃𝑏 ∈
𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ (((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 75 | 74 | rexbii 2504 |
. . . 4
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ ∃𝑎 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 76 | | r19.41v 2653 |
. . . 4
⊢
(∃𝑎 ∈
𝑉 (((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ (∃𝑎 ∈ 𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 77 | | r19.41v 2653 |
. . . . 5
⊢
(∃𝑎 ∈
𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ↔ (∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏)) |
| 78 | 77 | anbi1i 458 |
. . . 4
⊢
((∃𝑎 ∈
𝑉 ((𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 79 | 75, 76, 78 | 3bitri 206 |
. . 3
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑)) ↔ ((∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 80 | 65, 70, 79 | 3bitri 206 |
. 2
⊢
(∃𝑎 ∈
𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑)) ↔ ((∃𝑎 ∈ 𝑉 (𝑃‘0) = 𝑎 ∧ ∃𝑏 ∈ 𝑉 (𝑃‘1) = 𝑏) ∧ (∃𝑐 ∈ 𝑉 (𝑃‘2) = 𝑐 ∧ ∃𝑑 ∈ 𝑉 (𝑃‘3) = 𝑑))) |
| 81 | 59, 80 | sylibr 134 |
1
⊢ ((𝐿 ∈
(ℤ≥‘3) ∧ 𝑃:(0...𝐿)⟶𝑉) → ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ∃𝑑 ∈ 𝑉 (((𝑃‘0) = 𝑎 ∧ (𝑃‘1) = 𝑏) ∧ ((𝑃‘2) = 𝑐 ∧ (𝑃‘3) = 𝑑))) |