ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecclap GIF version

Theorem rerecclap 8493
Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
rerecclap ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rerecclap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0re 7769 . . . . . 6 0 ∈ ℝ
2 apreap 8352 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ 𝐴 # 0))
31, 2mpan2 421 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ 𝐴 # 0))
43pm5.32i 449 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ 𝐴 # 0))
5 recexre 8343 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
64, 5sylbi 120 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
7 eqcom 2141 . . . . 5 (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥)
8 1cnd 7785 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
9 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
109recnd 7797 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
11 simpll 518 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
1211recnd 7797 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
13 simplr 519 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 # 0)
14 divmulap 8438 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
158, 10, 12, 13, 14syl112anc 1220 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
167, 15syl5bb 191 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1))
1716rexbidva 2434 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
186, 17mpbird 166 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
19 risset 2463 . 2 ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
2018, 19sylibr 133 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  (class class class)co 5774  cc 7621  cr 7622  0cc0 7623  1c1 7624   · cmul 7628   # creap 8339   # cap 8346   / cdiv 8435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436
This theorem is referenced by:  redivclap  8494  rerecclapzi  8539  rerecclapd  8596  ltdiv2  8648  recnz  9147  reexpclzap  10316  redivap  10649  imdivap  10656  caucvgrelemrec  10754
  Copyright terms: Public domain W3C validator