ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecclap GIF version

Theorem rerecclap 8717
Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
rerecclap ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rerecclap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0re 7987 . . . . . 6 0 ∈ ℝ
2 apreap 8574 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ 𝐴 # 0))
31, 2mpan2 425 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ 𝐴 # 0))
43pm5.32i 454 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ 𝐴 # 0))
5 recexre 8565 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
64, 5sylbi 121 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
7 eqcom 2191 . . . . 5 (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥)
8 1cnd 8003 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
9 simpr 110 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
109recnd 8016 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
11 simpll 527 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
1211recnd 8016 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
13 simplr 528 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 # 0)
14 divmulap 8662 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
158, 10, 12, 13, 14syl112anc 1253 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
167, 15bitrid 192 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1))
1716rexbidva 2487 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
186, 17mpbird 167 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
19 risset 2518 . 2 ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
2018, 19sylibr 134 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wrex 2469   class class class wbr 4018  (class class class)co 5896  cc 7839  cr 7840  0cc0 7841  1c1 7842   · cmul 7846   # creap 8561   # cap 8568   / cdiv 8659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660
This theorem is referenced by:  redivclap  8718  rerecclapzi  8763  rerecclapd  8821  rerecapb  8830  ltdiv2  8874  recnz  9376  reexpclzap  10571  redivap  10915  imdivap  10922  caucvgrelemrec  11020  trirec0  15251
  Copyright terms: Public domain W3C validator