![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rerecclap | GIF version |
Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.) |
Ref | Expression |
---|---|
rerecclap | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7409 | . . . . . 6 ⊢ 0 ∈ ℝ | |
2 | apreap 7982 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ 𝐴 #ℝ 0)) | |
3 | 1, 2 | mpan2 416 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 ↔ 𝐴 #ℝ 0)) |
4 | 3 | pm5.32i 442 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0)) |
5 | recexre 7973 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | |
6 | 4, 5 | sylbi 119 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
7 | eqcom 2087 | . . . . 5 ⊢ (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥) | |
8 | 1cnd 7425 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ) | |
9 | simpr 108 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
10 | 9 | recnd 7437 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ) |
11 | simpll 496 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) | |
12 | 11 | recnd 7437 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ) |
13 | simplr 497 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 # 0) | |
14 | divmulap 8058 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) | |
15 | 8, 10, 12, 13, 14 | syl112anc 1176 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1)) |
16 | 7, 15 | syl5bb 190 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1)) |
17 | 16 | rexbidva 2373 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)) |
18 | 6, 17 | mpbird 165 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) |
19 | risset 2402 | . 2 ⊢ ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴)) | |
20 | 18, 19 | sylibr 132 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1287 ∈ wcel 1436 ∃wrex 2356 class class class wbr 3814 (class class class)co 5594 ℂcc 7269 ℝcr 7270 0cc0 7271 1c1 7272 · cmul 7276 #ℝ creap 7969 # cap 7976 / cdiv 8055 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1379 ax-7 1380 ax-gen 1381 ax-ie1 1425 ax-ie2 1426 ax-8 1438 ax-10 1439 ax-11 1440 ax-i12 1441 ax-bndl 1442 ax-4 1443 ax-13 1447 ax-14 1448 ax-17 1462 ax-i9 1466 ax-ial 1470 ax-i5r 1471 ax-ext 2067 ax-sep 3925 ax-pow 3977 ax-pr 4003 ax-un 4227 ax-setind 4319 ax-cnex 7357 ax-resscn 7358 ax-1cn 7359 ax-1re 7360 ax-icn 7361 ax-addcl 7362 ax-addrcl 7363 ax-mulcl 7364 ax-mulrcl 7365 ax-addcom 7366 ax-mulcom 7367 ax-addass 7368 ax-mulass 7369 ax-distr 7370 ax-i2m1 7371 ax-0lt1 7372 ax-1rid 7373 ax-0id 7374 ax-rnegex 7375 ax-precex 7376 ax-cnre 7377 ax-pre-ltirr 7378 ax-pre-ltwlin 7379 ax-pre-lttrn 7380 ax-pre-apti 7381 ax-pre-ltadd 7382 ax-pre-mulgt0 7383 ax-pre-mulext 7384 |
This theorem depends on definitions: df-bi 115 df-3an 924 df-tru 1290 df-fal 1293 df-nf 1393 df-sb 1690 df-eu 1948 df-mo 1949 df-clab 2072 df-cleq 2078 df-clel 2081 df-nfc 2214 df-ne 2252 df-nel 2347 df-ral 2360 df-rex 2361 df-reu 2362 df-rmo 2363 df-rab 2364 df-v 2616 df-sbc 2829 df-dif 2988 df-un 2990 df-in 2992 df-ss 2999 df-pw 3411 df-sn 3431 df-pr 3432 df-op 3434 df-uni 3631 df-br 3815 df-opab 3869 df-id 4087 df-po 4090 df-iso 4091 df-xp 4410 df-rel 4411 df-cnv 4412 df-co 4413 df-dm 4414 df-iota 4937 df-fun 4974 df-fv 4980 df-riota 5550 df-ov 5597 df-oprab 5598 df-mpt2 5599 df-pnf 7445 df-mnf 7446 df-xr 7447 df-ltxr 7448 df-le 7449 df-sub 7576 df-neg 7577 df-reap 7970 df-ap 7977 df-div 8056 |
This theorem is referenced by: redivclap 8114 rerecclapzi 8159 rerecclapd 8214 ltdiv2 8260 recnz 8749 reexpclzap 9826 redivap 10149 imdivap 10156 caucvgrelemrec 10253 |
Copyright terms: Public domain | W3C validator |