Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecclap GIF version

Theorem rerecclap 8514
 Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
rerecclap ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rerecclap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0re 7790 . . . . . 6 0 ∈ ℝ
2 apreap 8373 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ 𝐴 # 0))
31, 2mpan2 422 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ 𝐴 # 0))
43pm5.32i 450 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ 𝐴 # 0))
5 recexre 8364 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
64, 5sylbi 120 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
7 eqcom 2142 . . . . 5 (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥)
8 1cnd 7806 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
9 simpr 109 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
109recnd 7818 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
11 simpll 519 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
1211recnd 7818 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
13 simplr 520 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 # 0)
14 divmulap 8459 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
158, 10, 12, 13, 14syl112anc 1221 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
167, 15syl5bb 191 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1))
1716rexbidva 2435 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
186, 17mpbird 166 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
19 risset 2466 . 2 ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
2018, 19sylibr 133 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∃wrex 2418   class class class wbr 3937  (class class class)co 5782  ℂcc 7642  ℝcr 7643  0cc0 7644  1c1 7645   · cmul 7649   #ℝ creap 8360   # cap 8367   / cdiv 8456 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457 This theorem is referenced by:  redivclap  8515  rerecclapzi  8560  rerecclapd  8617  ltdiv2  8669  recnz  9168  reexpclzap  10344  redivap  10678  imdivap  10685  caucvgrelemrec  10783  trirec0  13412
 Copyright terms: Public domain W3C validator