ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rerecclap GIF version

Theorem rerecclap 8877
Description: Closure law for reciprocal. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
rerecclap ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)

Proof of Theorem rerecclap
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0re 8146 . . . . . 6 0 ∈ ℝ
2 apreap 8734 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (𝐴 # 0 ↔ 𝐴 # 0))
31, 2mpan2 425 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 ↔ 𝐴 # 0))
43pm5.32i 454 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) ↔ (𝐴 ∈ ℝ ∧ 𝐴 # 0))
5 recexre 8725 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
64, 5sylbi 121 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
7 eqcom 2231 . . . . 5 (𝑥 = (1 / 𝐴) ↔ (1 / 𝐴) = 𝑥)
8 1cnd 8162 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
9 simpr 110 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
109recnd 8175 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
11 simpll 527 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ)
1211recnd 8175 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℂ)
13 simplr 528 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → 𝐴 # 0)
14 divmulap 8822 . . . . . 6 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 # 0)) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
158, 10, 12, 13, 14syl112anc 1275 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → ((1 / 𝐴) = 𝑥 ↔ (𝐴 · 𝑥) = 1))
167, 15bitrid 192 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 # 0) ∧ 𝑥 ∈ ℝ) → (𝑥 = (1 / 𝐴) ↔ (𝐴 · 𝑥) = 1))
1716rexbidva 2527 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴) ↔ ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1))
186, 17mpbird 167 . 2 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
19 risset 2558 . 2 ((1 / 𝐴) ∈ ℝ ↔ ∃𝑥 ∈ ℝ 𝑥 = (1 / 𝐴))
2018, 19sylibr 134 1 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509   class class class wbr 4083  (class class class)co 6001  cc 7997  cr 7998  0cc0 7999  1c1 8000   · cmul 8004   # creap 8721   # cap 8728   / cdiv 8819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820
This theorem is referenced by:  redivclap  8878  rerecclapzi  8923  rerecclapd  8981  rerecapb  8990  ltdiv2  9034  recnz  9540  reexpclzap  10781  redivap  11385  imdivap  11392  caucvgrelemrec  11490  trirec0  16412
  Copyright terms: Public domain W3C validator