Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleq | GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | raleqf 2661 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∀wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 |
This theorem is referenced by: raleqi 2669 raleqdv 2671 raleqbi1dv 2673 sbralie 2714 inteq 3834 iineq1 3887 bnd2 4159 frforeq2 4330 weeq2 4342 ordeq 4357 reg2exmid 4520 reg3exmid 4564 omsinds 4606 fncnv 5264 funimaexglem 5281 isoeq4 5783 acexmidlemv 5851 tfrlem1 6287 tfr0dm 6301 tfrlemisucaccv 6304 tfrlemi1 6311 tfrlemi14d 6312 tfrexlem 6313 tfr1onlemsucaccv 6320 tfr1onlemaccex 6327 tfr1onlemres 6328 tfrcllemsucaccv 6333 tfrcllembxssdm 6335 tfrcllemaccex 6340 tfrcllemres 6341 tfrcldm 6342 ixpeq1 6687 ac6sfi 6876 fimax2gtri 6879 dcfi 6958 supeq1 6963 supeq2 6966 nnnninfeq2 7105 isomni 7112 ismkv 7129 iswomni 7141 sup3exmid 8873 rexanuz 10952 rexfiuz 10953 fimaxre2 11190 modfsummod 11421 mhmpropd 12689 cnprcl2k 13000 ispsmet 13117 ismet 13138 isxmet 13139 cncfval 13353 dvcn 13458 setindis 14002 bdsetindis 14004 strcoll2 14018 strcollnfALT 14021 |
Copyright terms: Public domain | W3C validator |