| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleq | GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | raleqf 2724 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 |
| This theorem is referenced by: raleqi 2732 raleqdv 2734 raleqbi1dv 2740 sbralie 2783 inteq 3925 iineq1 3978 bnd2 4256 frforeq2 4435 weeq2 4447 ordeq 4462 reg2exmid 4627 reg3exmid 4671 omsinds 4713 fncnv 5386 funimaexglem 5403 isoeq4 5927 acexmidlemv 5998 tfrlem1 6452 tfr0dm 6466 tfrlemisucaccv 6469 tfrlemi1 6476 tfrlemi14d 6477 tfrexlem 6478 tfr1onlemsucaccv 6485 tfr1onlemaccex 6492 tfr1onlemres 6493 tfrcllemsucaccv 6498 tfrcllembxssdm 6500 tfrcllemaccex 6505 tfrcllemres 6506 tfrcldm 6507 ixpeq1 6854 ac6sfi 7056 fimax2gtri 7059 dcfi 7144 supeq1 7149 supeq2 7152 nnnninfeq2 7292 isomni 7299 ismkv 7316 iswomni 7328 acneq 7380 tapeq2 7435 sup3exmid 9100 rexanuz 11494 rexfiuz 11495 fimaxre2 11733 modfsummod 11964 mhmpropd 13494 isghm 13775 iscmn 13825 srgideu 13930 dfrhm2 14112 cnprcl2k 14874 ispsmet 14991 ismet 15012 isxmet 15013 cncfval 15240 dvcn 15368 setindis 16288 bdsetindis 16290 strcoll2 16304 strcollnfALT 16307 |
| Copyright terms: Public domain | W3C validator |