![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > raleq | GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2253 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2253 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | raleqf 2594 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1312 ∀wral 2388 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 |
This theorem is referenced by: raleqi 2602 raleqdv 2604 raleqbi1dv 2606 sbralie 2639 inteq 3738 iineq1 3791 bnd2 4055 frforeq2 4225 weeq2 4237 ordeq 4252 reg2exmid 4409 reg3exmid 4452 omsinds 4493 fncnv 5145 funimaexglem 5162 isoeq4 5657 acexmidlemv 5724 tfrlem1 6157 tfr0dm 6171 tfrlemisucaccv 6174 tfrlemi1 6181 tfrlemi14d 6182 tfrexlem 6183 tfr1onlemsucaccv 6190 tfr1onlemaccex 6197 tfr1onlemres 6198 tfrcllemsucaccv 6203 tfrcllembxssdm 6205 tfrcllemaccex 6210 tfrcllemres 6211 tfrcldm 6212 ixpeq1 6555 ac6sfi 6743 fimax2gtri 6746 supeq1 6823 supeq2 6826 isomni 6956 ismkv 6975 sup3exmid 8619 rexanuz 10646 rexfiuz 10647 fimaxre2 10884 modfsummod 11113 cnprcl2k 12211 ispsmet 12306 ismet 12327 isxmet 12328 cncfval 12539 dvcn 12613 setindis 12848 bdsetindis 12850 strcoll2 12864 |
Copyright terms: Public domain | W3C validator |