| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleq | GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2349 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | raleqf 2699 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∀wral 2485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 |
| This theorem is referenced by: raleqi 2707 raleqdv 2709 raleqbi1dv 2715 sbralie 2757 inteq 3894 iineq1 3947 bnd2 4225 frforeq2 4400 weeq2 4412 ordeq 4427 reg2exmid 4592 reg3exmid 4636 omsinds 4678 fncnv 5349 funimaexglem 5366 isoeq4 5886 acexmidlemv 5955 tfrlem1 6407 tfr0dm 6421 tfrlemisucaccv 6424 tfrlemi1 6431 tfrlemi14d 6432 tfrexlem 6433 tfr1onlemsucaccv 6440 tfr1onlemaccex 6447 tfr1onlemres 6448 tfrcllemsucaccv 6453 tfrcllembxssdm 6455 tfrcllemaccex 6460 tfrcllemres 6461 tfrcldm 6462 ixpeq1 6809 ac6sfi 7010 fimax2gtri 7013 dcfi 7098 supeq1 7103 supeq2 7106 nnnninfeq2 7246 isomni 7253 ismkv 7270 iswomni 7282 acneq 7330 tapeq2 7385 sup3exmid 9050 rexanuz 11374 rexfiuz 11375 fimaxre2 11613 modfsummod 11844 mhmpropd 13373 isghm 13654 iscmn 13704 srgideu 13809 dfrhm2 13991 cnprcl2k 14753 ispsmet 14870 ismet 14891 isxmet 14892 cncfval 15119 dvcn 15247 setindis 16041 bdsetindis 16043 strcoll2 16057 strcollnfALT 16060 |
| Copyright terms: Public domain | W3C validator |