| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raleq | GIF version | ||
| Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
| Ref | Expression |
|---|---|
| raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | raleqf 2697 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∀wral 2483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 |
| This theorem is referenced by: raleqi 2705 raleqdv 2707 raleqbi1dv 2713 sbralie 2755 inteq 3887 iineq1 3940 bnd2 4216 frforeq2 4391 weeq2 4403 ordeq 4418 reg2exmid 4583 reg3exmid 4627 omsinds 4669 fncnv 5339 funimaexglem 5356 isoeq4 5872 acexmidlemv 5941 tfrlem1 6393 tfr0dm 6407 tfrlemisucaccv 6410 tfrlemi1 6417 tfrlemi14d 6418 tfrexlem 6419 tfr1onlemsucaccv 6426 tfr1onlemaccex 6433 tfr1onlemres 6434 tfrcllemsucaccv 6439 tfrcllembxssdm 6441 tfrcllemaccex 6446 tfrcllemres 6447 tfrcldm 6448 ixpeq1 6795 ac6sfi 6994 fimax2gtri 6997 dcfi 7082 supeq1 7087 supeq2 7090 nnnninfeq2 7230 isomni 7237 ismkv 7254 iswomni 7266 acneq 7313 tapeq2 7364 sup3exmid 9029 rexanuz 11241 rexfiuz 11242 fimaxre2 11480 modfsummod 11711 mhmpropd 13240 isghm 13521 iscmn 13571 srgideu 13676 dfrhm2 13858 cnprcl2k 14620 ispsmet 14737 ismet 14758 isxmet 14759 cncfval 14986 dvcn 15114 setindis 15836 bdsetindis 15838 strcoll2 15852 strcollnfALT 15855 |
| Copyright terms: Public domain | W3C validator |