Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > raleq | GIF version |
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) |
Ref | Expression |
---|---|
raleq | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | raleqf 2657 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∀wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 |
This theorem is referenced by: raleqi 2665 raleqdv 2667 raleqbi1dv 2669 sbralie 2710 inteq 3827 iineq1 3880 bnd2 4152 frforeq2 4323 weeq2 4335 ordeq 4350 reg2exmid 4513 reg3exmid 4557 omsinds 4599 fncnv 5254 funimaexglem 5271 isoeq4 5772 acexmidlemv 5840 tfrlem1 6276 tfr0dm 6290 tfrlemisucaccv 6293 tfrlemi1 6300 tfrlemi14d 6301 tfrexlem 6302 tfr1onlemsucaccv 6309 tfr1onlemaccex 6316 tfr1onlemres 6317 tfrcllemsucaccv 6322 tfrcllembxssdm 6324 tfrcllemaccex 6329 tfrcllemres 6330 tfrcldm 6331 ixpeq1 6675 ac6sfi 6864 fimax2gtri 6867 dcfi 6946 supeq1 6951 supeq2 6954 nnnninfeq2 7093 isomni 7100 ismkv 7117 iswomni 7129 sup3exmid 8852 rexanuz 10930 rexfiuz 10931 fimaxre2 11168 modfsummod 11399 cnprcl2k 12846 ispsmet 12963 ismet 12984 isxmet 12985 cncfval 13199 dvcn 13304 setindis 13849 bdsetindis 13851 strcoll2 13865 strcollnfALT 13868 |
Copyright terms: Public domain | W3C validator |