ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s3eq2 GIF version

Theorem s3eq2 11309
Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
s3eq2 (𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)

Proof of Theorem s3eq2
StepHypRef Expression
1 eqidd 2230 . 2 (𝐵 = 𝐷𝐴 = 𝐴)
2 id 19 . 2 (𝐵 = 𝐷𝐵 = 𝐷)
3 eqidd 2230 . 2 (𝐵 = 𝐷𝐶 = 𝐶)
41, 2, 3s3eqd 11303 1 (𝐵 = 𝐷 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐷𝐶”⟩)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  ⟨“cs3 11282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-s1 11149  df-s2 11288  df-s3 11289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator