| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s3eq2 | GIF version | ||
| Description: Equality theorem for a length 3 word for the second symbol. (Contributed by AV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| s3eq2 | ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2208 | . 2 ⊢ (𝐵 = 𝐷 → 𝐴 = 𝐴) | |
| 2 | id 19 | . 2 ⊢ (𝐵 = 𝐷 → 𝐵 = 𝐷) | |
| 3 | eqidd 2208 | . 2 ⊢ (𝐵 = 𝐷 → 𝐶 = 𝐶) | |
| 4 | 1, 2, 3 | s3eqd 11264 | 1 ⊢ (𝐵 = 𝐷 → 〈“𝐴𝐵𝐶”〉 = 〈“𝐴𝐷𝐶”〉) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 〈“cs3 11243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2779 df-un 3179 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-br 4061 df-iota 5252 df-fv 5299 df-ov 5972 df-s1 11110 df-s2 11249 df-s3 11250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |