Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbal | GIF version |
Description: Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.) |
Ref | Expression |
---|---|
sbal | ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbalyz 1992 | . . . 4 ⊢ ([𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑤 / 𝑦]𝜑) | |
2 | 1 | sbbii 1758 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑) |
3 | sbalyz 1992 | . . 3 ⊢ ([𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) |
5 | ax-17 1519 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑤∀𝑥𝜑) | |
6 | 5 | sbco2vh 1938 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑) |
7 | ax-17 1519 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
8 | 7 | sbco2vh 1938 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) |
9 | 8 | albii 1463 | . 2 ⊢ (∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
10 | 4, 6, 9 | 3bitr3i 209 | 1 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∀wal 1346 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbal1 1995 sbalv 1998 sbcal 3006 sbcalg 3007 |
Copyright terms: Public domain | W3C validator |