| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbal | GIF version | ||
| Description: Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbal | ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbalyz 2018 | . . . 4 ⊢ ([𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑤 / 𝑦]𝜑) | |
| 2 | 1 | sbbii 1779 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑) |
| 3 | sbalyz 2018 | . . 3 ⊢ ([𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) |
| 5 | ax-17 1540 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑤∀𝑥𝜑) | |
| 6 | 5 | sbco2vh 1964 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑) |
| 7 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 8 | 7 | sbco2vh 1964 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) |
| 9 | 8 | albii 1484 | . 2 ⊢ (∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
| 10 | 4, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∀wal 1362 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: sbal1 2021 sbalv 2024 sbcal 3041 sbcalg 3042 |
| Copyright terms: Public domain | W3C validator |