ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal GIF version

Theorem sbal 1988
Description: Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
Assertion
Ref Expression
sbal ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbal
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sbalyz 1987 . . . 4 ([𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑤 / 𝑦]𝜑)
21sbbii 1753 . . 3 ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑)
3 sbalyz 1987 . . 3 ([𝑧 / 𝑤]∀𝑥[𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑)
42, 3bitri 183 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑)
5 ax-17 1514 . . 3 (∀𝑥𝜑 → ∀𝑤𝑥𝜑)
65sbco2vh 1933 . 2 ([𝑧 / 𝑤][𝑤 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑)
7 ax-17 1514 . . . 4 (𝜑 → ∀𝑤𝜑)
87sbco2vh 1933 . . 3 ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑)
98albii 1458 . 2 (∀𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
104, 6, 93bitr3i 209 1 ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbal1  1990  sbalv  1993  sbcal  3002  sbcalg  3003
  Copyright terms: Public domain W3C validator