![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelopabf | GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4273 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
opelopabf.x | ⊢ Ⅎ𝑥𝜓 |
opelopabf.y | ⊢ Ⅎ𝑦𝜒 |
opelopabf.1 | ⊢ 𝐴 ∈ V |
opelopabf.2 | ⊢ 𝐵 ∈ V |
opelopabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabf.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabf | ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 4262 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
2 | opelopabf.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | nfcv 2319 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
4 | opelopabf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfsbc 2985 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
6 | opelopabf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 6 | sbcbidv 3023 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
8 | 5, 7 | sbciegf 2996 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
9 | 2, 8 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓) |
10 | opelopabf.2 | . . 3 ⊢ 𝐵 ∈ V | |
11 | opelopabf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
12 | opelopabf.4 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
13 | 11, 12 | sbciegf 2996 | . . 3 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
14 | 10, 13 | ax-mp 5 | . 2 ⊢ ([𝐵 / 𝑦]𝜓 ↔ 𝜒) |
15 | 1, 9, 14 | 3bitri 206 | 1 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 Ⅎwnf 1460 ∈ wcel 2148 Vcvv 2739 [wsbc 2964 ⟨cop 3597 {copab 4065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-opab 4067 |
This theorem is referenced by: pofun 4314 fmptco 5685 |
Copyright terms: Public domain | W3C validator |