| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabf | GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4336 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| opelopabf.x | ⊢ Ⅎ𝑥𝜓 |
| opelopabf.y | ⊢ Ⅎ𝑦𝜒 |
| opelopabf.1 | ⊢ 𝐴 ∈ V |
| opelopabf.2 | ⊢ 𝐵 ∈ V |
| opelopabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopabf.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opelopabf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 4324 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
| 2 | opelopabf.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | nfcv 2350 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 4 | opelopabf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfsbc 3026 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
| 6 | opelopabf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | sbcbidv 3064 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 8 | 5, 7 | sbciegf 3037 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 9 | 2, 8 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓) |
| 10 | opelopabf.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 11 | opelopabf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 12 | opelopabf.4 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 13 | 11, 12 | sbciegf 3037 | . . 3 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 14 | 10, 13 | ax-mp 5 | . 2 ⊢ ([𝐵 / 𝑦]𝜓 ↔ 𝜒) |
| 15 | 1, 9, 14 | 3bitri 206 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 Ⅎwnf 1484 ∈ wcel 2178 Vcvv 2776 [wsbc 3005 〈cop 3646 {copab 4120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 |
| This theorem is referenced by: pofun 4377 fmptco 5769 uchoice 6246 |
| Copyright terms: Public domain | W3C validator |