ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabf GIF version

Theorem opelopabf 4276
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4273 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x 𝑥𝜓
opelopabf.y 𝑦𝜒
opelopabf.1 𝐴 ∈ V
opelopabf.2 𝐵 ∈ V
opelopabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabf.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabf (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 4262 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 opelopabf.1 . . 3 𝐴 ∈ V
3 nfcv 2319 . . . . 5 𝑥𝐵
4 opelopabf.x . . . . 5 𝑥𝜓
53, 4nfsbc 2985 . . . 4 𝑥[𝐵 / 𝑦]𝜓
6 opelopabf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
76sbcbidv 3023 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
85, 7sbciegf 2996 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
92, 8ax-mp 5 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓)
10 opelopabf.2 . . 3 𝐵 ∈ V
11 opelopabf.y . . . 4 𝑦𝜒
12 opelopabf.4 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
1311, 12sbciegf 2996 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓𝜒))
1410, 13ax-mp 5 . 2 ([𝐵 / 𝑦]𝜓𝜒)
151, 9, 143bitri 206 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wnf 1460  wcel 2148  Vcvv 2739  [wsbc 2964  cop 3597  {copab 4065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067
This theorem is referenced by:  pofun  4314  fmptco  5685
  Copyright terms: Public domain W3C validator