Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelopabf | GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4256 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
opelopabf.x | ⊢ Ⅎ𝑥𝜓 |
opelopabf.y | ⊢ Ⅎ𝑦𝜒 |
opelopabf.1 | ⊢ 𝐴 ∈ V |
opelopabf.2 | ⊢ 𝐵 ∈ V |
opelopabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabf.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 4245 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
2 | opelopabf.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | nfcv 2312 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
4 | opelopabf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfsbc 2975 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
6 | opelopabf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 6 | sbcbidv 3013 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
8 | 5, 7 | sbciegf 2986 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
9 | 2, 8 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓) |
10 | opelopabf.2 | . . 3 ⊢ 𝐵 ∈ V | |
11 | opelopabf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
12 | opelopabf.4 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
13 | 11, 12 | sbciegf 2986 | . . 3 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
14 | 10, 13 | ax-mp 5 | . 2 ⊢ ([𝐵 / 𝑦]𝜓 ↔ 𝜒) |
15 | 1, 9, 14 | 3bitri 205 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 Ⅎwnf 1453 ∈ wcel 2141 Vcvv 2730 [wsbc 2955 〈cop 3586 {copab 4049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 |
This theorem is referenced by: pofun 4297 fmptco 5662 |
Copyright terms: Public domain | W3C validator |