| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelopabf | GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4307 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| opelopabf.x | ⊢ Ⅎ𝑥𝜓 |
| opelopabf.y | ⊢ Ⅎ𝑦𝜒 |
| opelopabf.1 | ⊢ 𝐴 ∈ V |
| opelopabf.2 | ⊢ 𝐵 ∈ V |
| opelopabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| opelopabf.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opelopabf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 4295 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
| 2 | opelopabf.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | nfcv 2339 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 4 | opelopabf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfsbc 3010 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
| 6 | opelopabf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | sbcbidv 3048 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 8 | 5, 7 | sbciegf 3021 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
| 9 | 2, 8 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓) |
| 10 | opelopabf.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 11 | opelopabf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
| 12 | opelopabf.4 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 13 | 11, 12 | sbciegf 3021 | . . 3 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
| 14 | 10, 13 | ax-mp 5 | . 2 ⊢ ([𝐵 / 𝑦]𝜓 ↔ 𝜒) |
| 15 | 1, 9, 14 | 3bitri 206 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 〈cop 3626 {copab 4094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 |
| This theorem is referenced by: pofun 4348 fmptco 5731 uchoice 6204 |
| Copyright terms: Public domain | W3C validator |