ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelopabf GIF version

Theorem opelopabf 4259
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4256 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x 𝑥𝜓
opelopabf.y 𝑦𝜒
opelopabf.1 𝐴 ∈ V
opelopabf.2 𝐵 ∈ V
opelopabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabf.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabf (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 4245 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 opelopabf.1 . . 3 𝐴 ∈ V
3 nfcv 2312 . . . . 5 𝑥𝐵
4 opelopabf.x . . . . 5 𝑥𝜓
53, 4nfsbc 2975 . . . 4 𝑥[𝐵 / 𝑦]𝜓
6 opelopabf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
76sbcbidv 3013 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
85, 7sbciegf 2986 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
92, 8ax-mp 5 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓)
10 opelopabf.2 . . 3 𝐵 ∈ V
11 opelopabf.y . . . 4 𝑦𝜒
12 opelopabf.4 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
1311, 12sbciegf 2986 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓𝜒))
1410, 13ax-mp 5 . 2 ([𝐵 / 𝑦]𝜓𝜒)
151, 9, 143bitri 205 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wnf 1453  wcel 2141  Vcvv 2730  [wsbc 2955  cop 3586  {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-opab 4051
This theorem is referenced by:  pofun  4297  fmptco  5662
  Copyright terms: Public domain W3C validator