Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg GIF version

Theorem sbcfg 5239
 Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 5095 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
21a1i 9 . . 3 (𝑋𝑉 → (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
32sbcbidv 2937 . 2 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵[𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
4 sbcfng 5238 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
5 sbcssg 3440 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵))
6 csbrng 4968 . . . . . 6 (𝑋𝑉𝑋 / 𝑥ran 𝐹 = ran 𝑋 / 𝑥𝐹)
76sseq1d 3094 . . . . 5 (𝑋𝑉 → (𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
85, 7bitrd 187 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
94, 8anbi12d 462 . . 3 (𝑋𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵) ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵)))
10 sbcan 2921 . . 3 ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵))
11 df-f 5095 . . 3 (𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵 ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
129, 10, 113bitr4g 222 . 2 (𝑋𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ 𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
133, 12bitrd 187 1 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   ∈ wcel 1463  [wsbc 2880  ⦋csb 2973   ⊆ wss 3039  ran crn 4508   Fn wfn 5086  ⟶wf 5087 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099 This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-br 3898  df-opab 3958  df-id 4183  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-fun 5093  df-fn 5094  df-f 5095 This theorem is referenced by:  ctiunctlemf  11857
 Copyright terms: Public domain W3C validator