ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcfg GIF version

Theorem sbcfg 5471
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
sbcfg (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Distinct variable groups:   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem sbcfg
StepHypRef Expression
1 df-f 5321 . . . 4 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
21a1i 9 . . 3 (𝑋𝑉 → (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
32sbcbidv 3087 . 2 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵[𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵)))
4 sbcfng 5470 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
5 sbcssg 3600 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵))
6 csbrng 5189 . . . . . 6 (𝑋𝑉𝑋 / 𝑥ran 𝐹 = ran 𝑋 / 𝑥𝐹)
76sseq1d 3253 . . . . 5 (𝑋𝑉 → (𝑋 / 𝑥ran 𝐹𝑋 / 𝑥𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
85, 7bitrd 188 . . . 4 (𝑋𝑉 → ([𝑋 / 𝑥]ran 𝐹𝐵 ↔ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
94, 8anbi12d 473 . . 3 (𝑋𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵) ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵)))
10 sbcan 3071 . . 3 ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴[𝑋 / 𝑥]ran 𝐹𝐵))
11 df-f 5321 . . 3 (𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵 ↔ (𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴 ∧ ran 𝑋 / 𝑥𝐹𝑋 / 𝑥𝐵))
129, 10, 113bitr4g 223 . 2 (𝑋𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) ↔ 𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
133, 12bitrd 188 1 (𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  [wsbc 3028  csb 3124  wss 3197  ran crn 4719   Fn wfn 5312  wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4383  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321
This theorem is referenced by:  csbwrdg  11096  ctiunctlemf  13004
  Copyright terms: Public domain W3C validator