Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcfg | GIF version |
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
sbcfg | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5192 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | 2 | sbcbidv 3009 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ [𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
4 | sbcfng 5335 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) | |
5 | sbcssg 3518 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
6 | csbrng 5065 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌ran 𝐹 = ran ⦋𝑋 / 𝑥⦌𝐹) | |
7 | 6 | sseq1d 3171 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) |
8 | 5, 7 | bitrd 187 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) |
9 | 4, 8 | anbi12d 465 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵) ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵))) |
10 | sbcan 2993 | . . 3 ⊢ ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵)) | |
11 | df-f 5192 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵 ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
12 | 9, 10, 11 | 3bitr4g 222 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
13 | 3, 12 | bitrd 187 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 [wsbc 2951 ⦋csb 3045 ⊆ wss 3116 ran crn 4605 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: ctiunctlemf 12371 |
Copyright terms: Public domain | W3C validator |