| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcfg | GIF version | ||
| Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| sbcfg | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f 5321 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
| 3 | 2 | sbcbidv 3087 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ [𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
| 4 | sbcfng 5470 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) | |
| 5 | sbcssg 3600 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
| 6 | csbrng 5189 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌ran 𝐹 = ran ⦋𝑋 / 𝑥⦌𝐹) | |
| 7 | 6 | sseq1d 3253 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) |
| 8 | 5, 7 | bitrd 188 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) |
| 9 | 4, 8 | anbi12d 473 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵) ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵))) |
| 10 | sbcan 3071 | . . 3 ⊢ ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵)) | |
| 11 | df-f 5321 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵 ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
| 12 | 9, 10, 11 | 3bitr4g 223 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
| 13 | 3, 12 | bitrd 188 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 [wsbc 3028 ⦋csb 3124 ⊆ wss 3197 ran crn 4719 Fn wfn 5312 ⟶wf 5313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-id 4383 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 |
| This theorem is referenced by: csbwrdg 11096 ctiunctlemf 13004 |
| Copyright terms: Public domain | W3C validator |