![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcfg | GIF version |
Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
sbcfg | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5258 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | 2 | sbcbidv 3044 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ [𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) |
4 | sbcfng 5401 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) | |
5 | sbcssg 3555 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
6 | csbrng 5127 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌ran 𝐹 = ran ⦋𝑋 / 𝑥⦌𝐹) | |
7 | 6 | sseq1d 3208 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) |
8 | 5, 7 | bitrd 188 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) |
9 | 4, 8 | anbi12d 473 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵) ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵))) |
10 | sbcan 3028 | . . 3 ⊢ ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵)) | |
11 | df-f 5258 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵 ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
12 | 9, 10, 11 | 3bitr4g 223 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
13 | 3, 12 | bitrd 188 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 [wsbc 2985 ⦋csb 3080 ⊆ wss 3153 ran crn 4660 Fn wfn 5249 ⟶wf 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-id 4324 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-fun 5256 df-fn 5257 df-f 5258 |
This theorem is referenced by: csbwrdg 10943 ctiunctlemf 12595 |
Copyright terms: Public domain | W3C validator |