| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbcfg | GIF version | ||
| Description: Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| sbcfg | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f 5262 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) | 
| 3 | 2 | sbcbidv 3048 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ [𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵))) | 
| 4 | sbcfng 5405 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) | |
| 5 | sbcssg 3559 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
| 6 | csbrng 5131 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌ran 𝐹 = ran ⦋𝑋 / 𝑥⦌𝐹) | |
| 7 | 6 | sseq1d 3212 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌ran 𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | 
| 8 | 5, 7 | bitrd 188 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵 ↔ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | 
| 9 | 4, 8 | anbi12d 473 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵) ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵))) | 
| 10 | sbcan 3032 | . . 3 ⊢ ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ([𝑋 / 𝑥]𝐹 Fn 𝐴 ∧ [𝑋 / 𝑥]ran 𝐹 ⊆ 𝐵)) | |
| 11 | df-f 5262 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵 ↔ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ∧ ran ⦋𝑋 / 𝑥⦌𝐹 ⊆ ⦋𝑋 / 𝑥⦌𝐵)) | |
| 12 | 9, 10, 11 | 3bitr4g 223 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) | 
| 13 | 3, 12 | bitrd 188 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹:𝐴⟶𝐵 ↔ ⦋𝑋 / 𝑥⦌𝐹:⦋𝑋 / 𝑥⦌𝐴⟶⦋𝑋 / 𝑥⦌𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 [wsbc 2989 ⦋csb 3084 ⊆ wss 3157 ran crn 4664 Fn wfn 5253 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 | 
| This theorem is referenced by: csbwrdg 10964 ctiunctlemf 12655 | 
| Copyright terms: Public domain | W3C validator |