| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcfng | GIF version | ||
| Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
| Ref | Expression |
|---|---|
| sbcfng | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5262 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
| 3 | 2 | sbcbidv 3048 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ [𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
| 4 | sbcfung 5283 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝑋 / 𝑥⦌𝐹)) | |
| 5 | sbceqg 3100 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ ⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
| 6 | csbdmg 4861 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌dom 𝐹 = dom ⦋𝑋 / 𝑥⦌𝐹) | |
| 7 | 6 | eqeq1d 2205 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) |
| 8 | 5, 7 | bitrd 188 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) |
| 9 | 4, 8 | anbi12d 473 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴) ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴))) |
| 10 | sbcan 3032 | . . 3 ⊢ ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴)) | |
| 11 | df-fn 5262 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
| 12 | 9, 10, 11 | 3bitr4g 223 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
| 13 | 3, 12 | bitrd 188 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 [wsbc 2989 ⦋csb 3084 dom cdm 4664 Fun wfun 5253 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: sbcfg 5409 |
| Copyright terms: Public domain | W3C validator |