![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcfng | GIF version |
Description: Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
sbcfng | ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5258 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | a1i 9 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
3 | 2 | sbcbidv 3045 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ [𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴))) |
4 | sbcfung 5279 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]Fun 𝐹 ↔ Fun ⦋𝑋 / 𝑥⦌𝐹)) | |
5 | sbceqg 3097 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ ⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
6 | csbdmg 4857 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌dom 𝐹 = dom ⦋𝑋 / 𝑥⦌𝐹) | |
7 | 6 | eqeq1d 2202 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌dom 𝐹 = ⦋𝑋 / 𝑥⦌𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) |
8 | 5, 7 | bitrd 188 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]dom 𝐹 = 𝐴 ↔ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) |
9 | 4, 8 | anbi12d 473 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴) ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴))) |
10 | sbcan 3029 | . . 3 ⊢ ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ([𝑋 / 𝑥]Fun 𝐹 ∧ [𝑋 / 𝑥]dom 𝐹 = 𝐴)) | |
11 | df-fn 5258 | . . 3 ⊢ (⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴 ↔ (Fun ⦋𝑋 / 𝑥⦌𝐹 ∧ dom ⦋𝑋 / 𝑥⦌𝐹 = ⦋𝑋 / 𝑥⦌𝐴)) | |
12 | 9, 10, 11 | 3bitr4g 223 | . 2 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](Fun 𝐹 ∧ dom 𝐹 = 𝐴) ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
13 | 3, 12 | bitrd 188 | 1 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴 ↔ ⦋𝑋 / 𝑥⦌𝐹 Fn ⦋𝑋 / 𝑥⦌𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 [wsbc 2986 ⦋csb 3081 dom cdm 4660 Fun wfun 5249 Fn wfn 5250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-id 4325 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-fun 5257 df-fn 5258 |
This theorem is referenced by: sbcfg 5403 |
Copyright terms: Public domain | W3C validator |