![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version |
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
Ref | Expression |
---|---|
vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
5 | 1, 2, 3, 4 | vtoclgf 2818 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: vtoclbg 2821 ceqex 2887 mo2icl 2939 nelrdva 2967 sbctt 3052 sbcnestgf 3132 csbing 3366 ifmdc 3597 prnzg 3742 sneqrg 3788 unisng 3852 csbopabg 4107 trss 4136 inex1g 4165 ssexg 4168 pwexg 4209 prexg 4240 opth 4266 ordelord 4412 uniexg 4470 vtoclr 4707 resieq 4952 csbima12g 5026 dmsnsnsng 5143 iotaexab 5233 iota5 5236 csbiotag 5247 funmo 5269 fconstg 5450 funfveu 5567 funbrfv 5595 fnbrfvb 5597 fvelimab 5613 ssimaexg 5619 fvelrn 5689 isoselem 5863 csbriotag 5886 csbov123g 5956 ovg 6057 tfrexlem 6387 rdg0g 6441 ensn1g 6851 fundmeng 6861 xpdom2g 6886 phplem3g 6912 prcdnql 7544 prcunqu 7545 prdisj 7552 shftvalg 10980 shftval4g 10981 climshft 11447 telfsumo 11609 fsumparts 11613 lcmgcdlem 12215 fiinopn 14172 bdzfauscl 15382 bdinex1g 15393 bdssexg 15396 bj-prexg 15403 bj-uniexg 15410 |
Copyright terms: Public domain | W3C validator |