| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version | ||
| Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | vtoclgf 2831 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: vtoclbg 2834 ceqex 2900 mo2icl 2952 nelrdva 2980 sbctt 3065 sbcnestgf 3145 csbing 3380 ifmdc 3612 prnzg 3757 sneqrg 3803 unisng 3867 csbopabg 4122 trss 4151 inex1g 4180 ssexg 4183 pwexg 4224 prexg 4255 opth 4281 ordelord 4428 uniexg 4486 vtoclr 4723 resieq 4969 csbima12g 5043 dmsnsnsng 5160 iotaexab 5250 iota5 5253 csbiotag 5264 funmo 5286 fconstg 5472 funfveu 5589 funbrfv 5617 fnbrfvb 5619 fvelimab 5635 ssimaexg 5641 fvelrn 5711 isoselem 5889 csbriotag 5912 csbov123g 5983 ovg 6085 tfrexlem 6420 rdg0g 6474 ensn1g 6889 fundmeng 6899 xpdom2g 6927 phplem3g 6953 prcdnql 7597 prcunqu 7598 prdisj 7605 shftvalg 11147 shftval4g 11148 climshft 11615 telfsumo 11777 fsumparts 11781 lcmgcdlem 12399 fiinopn 14476 bdzfauscl 15826 bdinex1g 15837 bdssexg 15840 bj-prexg 15847 bj-uniexg 15854 |
| Copyright terms: Public domain | W3C validator |