| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version | ||
| Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2372 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1574 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | vtoclgf 2859 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: vtoclbg 2862 ceqex 2930 mo2icl 2982 nelrdva 3010 sbctt 3095 sbcnestgf 3176 csbing 3411 ifmdc 3645 prnzg 3791 sneqrg 3839 unisng 3904 csbopabg 4161 trss 4190 inex1g 4219 ssexg 4222 pwexg 4263 prexg 4294 opth 4322 ordelord 4471 uniexg 4529 vtoclr 4766 resieq 5014 csbima12g 5088 dmsnsnsng 5205 iotaexab 5296 iota5 5299 csbiotag 5310 funmo 5332 fconstg 5521 funfveu 5639 funbrfv 5669 fnbrfvb 5671 fvelimab 5689 ssimaexg 5695 fvelrn 5765 isoselem 5943 csbriotag 5967 csbov123g 6039 ovg 6143 tfrexlem 6478 rdg0g 6532 ensn1g 6947 fundmeng 6958 xpdom2g 6987 phplem3g 7013 prcdnql 7667 prcunqu 7668 prdisj 7675 shftvalg 11342 shftval4g 11343 climshft 11810 telfsumo 11972 fsumparts 11976 lcmgcdlem 12594 fiinopn 14672 bdzfauscl 16211 bdinex1g 16222 bdssexg 16225 bj-prexg 16232 bj-uniexg 16239 |
| Copyright terms: Public domain | W3C validator |