| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version | ||
| Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2339 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | vtoclgf 2822 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
| This theorem is referenced by: vtoclbg 2825 ceqex 2891 mo2icl 2943 nelrdva 2971 sbctt 3056 sbcnestgf 3136 csbing 3370 ifmdc 3601 prnzg 3746 sneqrg 3792 unisng 3856 csbopabg 4111 trss 4140 inex1g 4169 ssexg 4172 pwexg 4213 prexg 4244 opth 4270 ordelord 4416 uniexg 4474 vtoclr 4711 resieq 4956 csbima12g 5030 dmsnsnsng 5147 iotaexab 5237 iota5 5240 csbiotag 5251 funmo 5273 fconstg 5454 funfveu 5571 funbrfv 5599 fnbrfvb 5601 fvelimab 5617 ssimaexg 5623 fvelrn 5693 isoselem 5867 csbriotag 5890 csbov123g 5960 ovg 6062 tfrexlem 6392 rdg0g 6446 ensn1g 6856 fundmeng 6866 xpdom2g 6891 phplem3g 6917 prcdnql 7551 prcunqu 7552 prdisj 7559 shftvalg 11001 shftval4g 11002 climshft 11469 telfsumo 11631 fsumparts 11635 lcmgcdlem 12245 fiinopn 14240 bdzfauscl 15536 bdinex1g 15547 bdssexg 15550 bj-prexg 15557 bj-uniexg 15564 |
| Copyright terms: Public domain | W3C validator |