| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version | ||
| Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2350 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | vtoclgf 2836 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: vtoclbg 2839 ceqex 2907 mo2icl 2959 nelrdva 2987 sbctt 3072 sbcnestgf 3153 csbing 3388 ifmdc 3622 prnzg 3768 sneqrg 3816 unisng 3881 csbopabg 4138 trss 4167 inex1g 4196 ssexg 4199 pwexg 4240 prexg 4271 opth 4299 ordelord 4446 uniexg 4504 vtoclr 4741 resieq 4988 csbima12g 5062 dmsnsnsng 5179 iotaexab 5269 iota5 5272 csbiotag 5283 funmo 5305 fconstg 5494 funfveu 5612 funbrfv 5640 fnbrfvb 5642 fvelimab 5658 ssimaexg 5664 fvelrn 5734 isoselem 5912 csbriotag 5935 csbov123g 6006 ovg 6108 tfrexlem 6443 rdg0g 6497 ensn1g 6912 fundmeng 6923 xpdom2g 6952 phplem3g 6978 prcdnql 7632 prcunqu 7633 prdisj 7640 shftvalg 11262 shftval4g 11263 climshft 11730 telfsumo 11892 fsumparts 11896 lcmgcdlem 12514 fiinopn 14591 bdzfauscl 16025 bdinex1g 16036 bdssexg 16039 bj-prexg 16046 bj-uniexg 16053 |
| Copyright terms: Public domain | W3C validator |