Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version |
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
Ref | Expression |
---|---|
vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
5 | 1, 2, 3, 4 | vtoclgf 2784 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: vtoclbg 2787 ceqex 2853 mo2icl 2905 nelrdva 2933 sbctt 3017 sbcnestgf 3096 csbing 3329 ifmdc 3558 prnzg 3700 sneqrg 3742 unisng 3806 csbopabg 4060 trss 4089 inex1g 4118 ssexg 4121 pwexg 4159 prexg 4189 opth 4215 ordelord 4359 uniexg 4417 vtoclr 4652 resieq 4894 csbima12g 4965 dmsnsnsng 5081 iota5 5173 csbiotag 5181 funmo 5203 fconstg 5384 funfveu 5499 funbrfv 5525 fnbrfvb 5527 fvelimab 5542 ssimaexg 5548 fvelrn 5616 isoselem 5788 csbriotag 5810 csbov123g 5880 ovg 5980 tfrexlem 6302 rdg0g 6356 ensn1g 6763 fundmeng 6773 xpdom2g 6798 phplem3g 6822 prcdnql 7425 prcunqu 7426 prdisj 7433 shftvalg 10778 shftval4g 10779 climshft 11245 telfsumo 11407 fsumparts 11411 lcmgcdlem 12009 fiinopn 12642 bdzfauscl 13772 bdinex1g 13783 bdssexg 13786 bj-prexg 13793 bj-uniexg 13800 |
Copyright terms: Public domain | W3C validator |