Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version |
Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
Ref | Expression |
---|---|
vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtoclg.2 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2312 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
5 | 1, 2, 3, 4 | vtoclgf 2788 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: vtoclbg 2791 ceqex 2857 mo2icl 2909 nelrdva 2937 sbctt 3021 sbcnestgf 3100 csbing 3334 ifmdc 3565 prnzg 3707 sneqrg 3749 unisng 3813 csbopabg 4067 trss 4096 inex1g 4125 ssexg 4128 pwexg 4166 prexg 4196 opth 4222 ordelord 4366 uniexg 4424 vtoclr 4659 resieq 4901 csbima12g 4972 dmsnsnsng 5088 iota5 5180 csbiotag 5191 funmo 5213 fconstg 5394 funfveu 5509 funbrfv 5535 fnbrfvb 5537 fvelimab 5552 ssimaexg 5558 fvelrn 5627 isoselem 5799 csbriotag 5821 csbov123g 5891 ovg 5991 tfrexlem 6313 rdg0g 6367 ensn1g 6775 fundmeng 6785 xpdom2g 6810 phplem3g 6834 prcdnql 7446 prcunqu 7447 prdisj 7454 shftvalg 10800 shftval4g 10801 climshft 11267 telfsumo 11429 fsumparts 11433 lcmgcdlem 12031 fiinopn 12796 bdzfauscl 13925 bdinex1g 13936 bdssexg 13939 bj-prexg 13946 bj-uniexg 13953 |
Copyright terms: Public domain | W3C validator |