| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclg | GIF version | ||
| Description: Implicit substitution of a class expression for a setvar variable. (Contributed by NM, 17-Apr-1995.) |
| Ref | Expression |
|---|---|
| vtoclg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| vtoclg.2 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| vtoclg | ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | vtoclg.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | vtoclg.2 | . 2 ⊢ 𝜑 | |
| 5 | 1, 2, 3, 4 | vtoclgf 2830 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: vtoclbg 2833 ceqex 2899 mo2icl 2951 nelrdva 2979 sbctt 3064 sbcnestgf 3144 csbing 3379 ifmdc 3611 prnzg 3756 sneqrg 3802 unisng 3866 csbopabg 4121 trss 4150 inex1g 4179 ssexg 4182 pwexg 4223 prexg 4254 opth 4280 ordelord 4427 uniexg 4485 vtoclr 4722 resieq 4968 csbima12g 5042 dmsnsnsng 5159 iotaexab 5249 iota5 5252 csbiotag 5263 funmo 5285 fconstg 5471 funfveu 5588 funbrfv 5616 fnbrfvb 5618 fvelimab 5634 ssimaexg 5640 fvelrn 5710 isoselem 5888 csbriotag 5911 csbov123g 5982 ovg 6084 tfrexlem 6419 rdg0g 6473 ensn1g 6888 fundmeng 6898 xpdom2g 6926 phplem3g 6952 prcdnql 7596 prcunqu 7597 prdisj 7604 shftvalg 11118 shftval4g 11119 climshft 11586 telfsumo 11748 fsumparts 11752 lcmgcdlem 12370 fiinopn 14447 bdzfauscl 15788 bdinex1g 15799 bdssexg 15802 bj-prexg 15809 bj-uniexg 15816 |
| Copyright terms: Public domain | W3C validator |