Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbcexg | GIF version |
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.) |
Ref | Expression |
---|---|
sbcexg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2963 | . 2 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]∃𝑥𝜑 ↔ [𝐴 / 𝑦]∃𝑥𝜑)) | |
2 | dfsbcq2 2963 | . . 3 ⊢ (𝑧 = 𝐴 → ([𝑧 / 𝑦]𝜑 ↔ [𝐴 / 𝑦]𝜑)) | |
3 | 2 | exbidv 1823 | . 2 ⊢ (𝑧 = 𝐴 → (∃𝑥[𝑧 / 𝑦]𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
4 | sbex 2002 | . 2 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) | |
5 | 1, 3, 4 | vtoclbg 2796 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝐴 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ∃wex 1490 [wsb 1760 ∈ wcel 2146 [wsbc 2960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-sbc 2961 |
This theorem is referenced by: sbcabel 3042 csbunig 3813 csbxpg 4701 csbrng 5082 |
Copyright terms: Public domain | W3C validator |