ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnz GIF version

Theorem snnz 3786
Description: The singleton of a set is not empty. It is also inhabited as shown at snm 3787. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
snnz.1 𝐴 ∈ V
Assertion
Ref Expression
snnz {𝐴} ≠ ∅

Proof of Theorem snnz
StepHypRef Expression
1 snnz.1 . 2 𝐴 ∈ V
2 snnzg 3784 . 2 (𝐴 ∈ V → {𝐴} ≠ ∅)
31, 2ax-mp 5 1 {𝐴} ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2200  wne 2400  Vcvv 2799  c0 3491  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-nul 3492  df-sn 3672
This theorem is referenced by:  0nep0  4249  1n0  6586  ssfii  7149
  Copyright terms: Public domain W3C validator