ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnz GIF version

Theorem snnz 3753
Description: The singleton of a set is not empty. It is also inhabited as shown at snm 3754. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
snnz.1 𝐴 ∈ V
Assertion
Ref Expression
snnz {𝐴} ≠ ∅

Proof of Theorem snnz
StepHypRef Expression
1 snnz.1 . 2 𝐴 ∈ V
2 snnzg 3751 . 2 (𝐴 ∈ V → {𝐴} ≠ ∅)
31, 2ax-mp 5 1 {𝐴} ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2177  wne 2377  Vcvv 2773  c0 3461  {csn 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3169  df-nul 3462  df-sn 3640
This theorem is referenced by:  0nep0  4213  1n0  6525  ssfii  7083
  Copyright terms: Public domain W3C validator