Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnz GIF version

Theorem snnz 3678
 Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
snnz.1 𝐴 ∈ V
Assertion
Ref Expression
snnz {𝐴} ≠ ∅

Proof of Theorem snnz
StepHypRef Expression
1 snnz.1 . 2 𝐴 ∈ V
2 snnzg 3676 . 2 (𝐴 ∈ V → {𝐴} ≠ ∅)
31, 2ax-mp 5 1 {𝐴} ≠ ∅
 Colors of variables: wff set class Syntax hints:   ∈ wcel 2128   ≠ wne 2327  Vcvv 2712  ∅c0 3394  {csn 3560 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139 This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-dif 3104  df-nul 3395  df-sn 3566 This theorem is referenced by:  0nep0  4125  1n0  6373  ssfii  6911
 Copyright terms: Public domain W3C validator