![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snnz | GIF version |
Description: The singleton of a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
snnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snnz | ⊢ {𝐴} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snnzg 3604 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ≠ ∅) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ {𝐴} ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1461 ≠ wne 2280 Vcvv 2655 ∅c0 3327 {csn 3491 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-v 2657 df-dif 3037 df-nul 3328 df-sn 3497 |
This theorem is referenced by: 0nep0 4047 1n0 6281 ssfii 6812 |
Copyright terms: Public domain | W3C validator |