ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssfii GIF version

Theorem ssfii 6933
Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
ssfii (𝐴𝑉𝐴 ⊆ (fi‘𝐴))

Proof of Theorem ssfii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2727 . . . . 5 𝑥 ∈ V
21intsn 3856 . . . 4 {𝑥} = 𝑥
3 simpl 108 . . . . 5 ((𝐴𝑉𝑥𝐴) → 𝐴𝑉)
4 simpr 109 . . . . . 6 ((𝐴𝑉𝑥𝐴) → 𝑥𝐴)
54snssd 3715 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ⊆ 𝐴)
61snnz 3692 . . . . . 6 {𝑥} ≠ ∅
76a1i 9 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ≠ ∅)
8 snfig 6774 . . . . . . 7 (𝑥 ∈ V → {𝑥} ∈ Fin)
98elv 2728 . . . . . 6 {𝑥} ∈ Fin
109a1i 9 . . . . 5 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ Fin)
11 elfir 6932 . . . . 5 ((𝐴𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → {𝑥} ∈ (fi‘𝐴))
123, 5, 7, 10, 11syl13anc 1229 . . . 4 ((𝐴𝑉𝑥𝐴) → {𝑥} ∈ (fi‘𝐴))
132, 12eqeltrrid 2252 . . 3 ((𝐴𝑉𝑥𝐴) → 𝑥 ∈ (fi‘𝐴))
1413ex 114 . 2 (𝐴𝑉 → (𝑥𝐴𝑥 ∈ (fi‘𝐴)))
1514ssrdv 3146 1 (𝐴𝑉𝐴 ⊆ (fi‘𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2135  wne 2334  Vcvv 2724  wss 3114  c0 3407  {csn 3573   cint 3821  cfv 5185  Fincfn 6700  ficfi 6927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4097  ax-nul 4105  ax-pow 4150  ax-pr 4184  ax-un 4408  ax-iinf 4562
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2726  df-sbc 2950  df-csb 3044  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3408  df-pw 3558  df-sn 3579  df-pr 3580  df-op 3582  df-uni 3787  df-int 3822  df-br 3980  df-opab 4041  df-mpt 4042  df-id 4268  df-suc 4346  df-iom 4565  df-xp 4607  df-rel 4608  df-cnv 4609  df-co 4610  df-dm 4611  df-rn 4612  df-res 4613  df-ima 4614  df-iota 5150  df-fun 5187  df-fn 5188  df-f 5189  df-f1 5190  df-fo 5191  df-f1o 5192  df-fv 5193  df-1o 6378  df-er 6495  df-en 6701  df-fin 6703  df-fi 6928
This theorem is referenced by:  fieq0  6935  fiuni  6937
  Copyright terms: Public domain W3C validator