| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssfii | GIF version | ||
| Description: Any element of a set 𝐴 is the intersection of a finite subset of 𝐴. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| ssfii | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | intsn 3958 | . . . 4 ⊢ ∩ {𝑥} = 𝑥 |
| 3 | simpl 109 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ 𝑉) | |
| 4 | simpr 110 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | snssd 3813 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ⊆ 𝐴) |
| 6 | 1 | snnz 3786 | . . . . . 6 ⊢ {𝑥} ≠ ∅ |
| 7 | 6 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ≠ ∅) |
| 8 | snfig 6975 | . . . . . . 7 ⊢ (𝑥 ∈ V → {𝑥} ∈ Fin) | |
| 9 | 8 | elv 2803 | . . . . . 6 ⊢ {𝑥} ∈ Fin |
| 10 | 9 | a1i 9 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑥} ∈ Fin) |
| 11 | elfir 7148 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ({𝑥} ⊆ 𝐴 ∧ {𝑥} ≠ ∅ ∧ {𝑥} ∈ Fin)) → ∩ {𝑥} ∈ (fi‘𝐴)) | |
| 12 | 3, 5, 7, 10, 11 | syl13anc 1273 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → ∩ {𝑥} ∈ (fi‘𝐴)) |
| 13 | 2, 12 | eqeltrrid 2317 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (fi‘𝐴)) |
| 14 | 13 | ex 115 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (fi‘𝐴))) |
| 15 | 14 | ssrdv 3230 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (fi‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ≠ wne 2400 Vcvv 2799 ⊆ wss 3197 ∅c0 3491 {csn 3666 ∩ cint 3923 ‘cfv 5318 Fincfn 6895 ficfi 7143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 df-fi 7144 |
| This theorem is referenced by: fieq0 7151 fiuni 7153 |
| Copyright terms: Public domain | W3C validator |