Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcgv | GIF version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2299 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1508 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | spcgf 2794 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1333 = wceq 1335 ∈ wcel 2128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: spcv 2806 mob2 2892 intss1 3822 dfiin2g 3882 exmidsssnc 4163 frirrg 4309 frind 4311 alxfr 4419 elirr 4498 en2lp 4511 tfisi 4544 mptfvex 5550 tfrcl 6305 rdgisucinc 6326 frecabex 6339 fisseneq 6869 mkvprop 7084 exmidfodomrlemr 7120 exmidfodomrlemrALT 7121 acfun 7125 ccfunen 7167 zfz1isolem1 10693 zfz1iso 10694 uniopn 12359 exmid1stab 13533 pw1nct 13536 sbthom 13560 |
Copyright terms: Public domain | W3C validator |