ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spcgv GIF version

Theorem spcgv 2851
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.)
Hypothesis
Ref Expression
spcgv.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcgv (𝐴𝑉 → (∀𝑥𝜑𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem spcgv
StepHypRef Expression
1 nfcv 2339 . 2 𝑥𝐴
2 nfv 1542 . 2 𝑥𝜓
3 spcgv.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
41, 2, 3spcgf 2846 1 (𝐴𝑉 → (∀𝑥𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1362   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  spcv  2858  mob2  2944  intss1  3889  dfiin2g  3949  exmidsssnc  4236  exmid1stab  4241  frirrg  4385  frind  4387  alxfr  4496  elirr  4577  en2lp  4590  tfisi  4623  mptfvex  5647  tfrcl  6422  rdgisucinc  6443  frecabex  6456  fisseneq  6995  mkvprop  7224  exmidfodomrlemr  7269  exmidfodomrlemrALT  7270  acfun  7274  exmidmotap  7328  ccfunen  7331  zfz1isolem1  10932  zfz1iso  10933  uniopn  14237  pw1nct  15647  sbthom  15670
  Copyright terms: Public domain W3C validator