| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > spcgv | GIF version | ||
| Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
| Ref | Expression |
|---|---|
| spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2348 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | nfv 1551 | . 2 ⊢ Ⅎ𝑥𝜓 | |
| 3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | spcgf 2855 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 |
| This theorem is referenced by: spcv 2867 mob2 2953 intss1 3900 dfiin2g 3960 exmidsssnc 4248 exmid1stab 4253 frirrg 4398 frind 4400 alxfr 4509 elirr 4590 en2lp 4603 tfisi 4636 mptfvex 5667 tfrcl 6452 rdgisucinc 6473 frecabex 6486 fisseneq 7033 mkvprop 7262 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 acfun 7321 exmidmotap 7375 ccfunen 7378 zfz1isolem1 10987 zfz1iso 10988 uniopn 14506 pw1nct 15977 sbthom 16002 |
| Copyright terms: Public domain | W3C validator |