Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spcgv | GIF version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2308 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1516 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | spcgf 2808 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 |
This theorem is referenced by: spcv 2820 mob2 2906 intss1 3839 dfiin2g 3899 exmidsssnc 4182 frirrg 4328 frind 4330 alxfr 4439 elirr 4518 en2lp 4531 tfisi 4564 mptfvex 5571 tfrcl 6332 rdgisucinc 6353 frecabex 6366 fisseneq 6897 mkvprop 7122 exmidfodomrlemr 7158 exmidfodomrlemrALT 7159 acfun 7163 ccfunen 7205 zfz1isolem1 10753 zfz1iso 10754 uniopn 12639 exmid1stab 13880 pw1nct 13883 sbthom 13905 |
Copyright terms: Public domain | W3C validator |