![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > spcgv | GIF version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | spcgv.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | spcgf 2843 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 |
This theorem is referenced by: spcv 2855 mob2 2941 intss1 3886 dfiin2g 3946 exmidsssnc 4233 exmid1stab 4238 frirrg 4382 frind 4384 alxfr 4493 elirr 4574 en2lp 4587 tfisi 4620 mptfvex 5644 tfrcl 6419 rdgisucinc 6440 frecabex 6453 fisseneq 6990 mkvprop 7219 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 acfun 7269 exmidmotap 7323 ccfunen 7326 zfz1isolem1 10914 zfz1iso 10915 uniopn 14180 pw1nct 15563 sbthom 15586 |
Copyright terms: Public domain | W3C validator |