| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | GIF version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 | ⊢ (𝜓 → 𝜑) |
| mpancom.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mpancom | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 | . 2 ⊢ (𝜓 → 𝜑) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | mpancom.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3075 onsucelsucr 4544 sucunielr 4546 ordsuc 4599 peano2b 4651 xpiindim 4803 fvelrnb 5608 fliftcnv 5842 riotaprop 5901 unielxp 6232 dmtpos 6314 tpossym 6334 ercnv 6613 cnvct 6868 php5dom 6924 3xpfi 6994 recrecnq 7461 1idpr 7659 eqlei2 8121 lem1 8874 eluzfz1 10106 fzpred 10145 uznfz 10178 fz0fzdiffz0 10205 fzctr 10208 flid 10374 flqeqceilz 10410 faclbnd3 10835 bcn1 10850 isfinite4im 10884 leabs 11239 gcd0id 12146 lcmgcdlem 12245 dvdsnprmd 12293 pcprod 12515 fldivp1 12517 intopsn 13010 mgm1 13013 sgrp1 13054 mnd1 13087 mnd1id 13088 grp1 13238 grp1inv 13239 eqger 13354 eqgid 13356 qusghm 13412 rngressid 13510 ring1 13615 ringressid 13619 subrgsubm 13790 resrhm2b 13805 lssex 13910 cncrng 14125 eltpsg 14276 tg1 14295 cldval 14335 cldss 14341 cldopn 14343 psmetdmdm 14560 dvef 14963 relogef 15100 zabsle1 15240 bj-nn0suc0 15596 |
| Copyright terms: Public domain | W3C validator |