| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | GIF version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 | ⊢ (𝜓 → 𝜑) |
| mpancom.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mpancom | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 | . 2 ⊢ (𝜓 → 𝜑) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | mpancom.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3115 onsucelsucr 4597 sucunielr 4599 ordsuc 4652 peano2b 4704 xpiindim 4856 fununfun 5360 fvelrnb 5674 fliftcnv 5912 riotaprop 5973 unielxp 6310 dmtpos 6392 tpossym 6412 ercnv 6691 cnvct 6952 php5dom 7012 3xpfi 7083 recrecnq 7569 1idpr 7767 eqlei2 8229 lem1 8982 eluzfz1 10215 fzpred 10254 uznfz 10287 fz0fzdiffz0 10314 fzctr 10317 flid 10491 flqeqceilz 10527 faclbnd3 10952 bcn1 10967 isfinite4im 11001 leabs 11571 gcd0id 12486 lcmgcdlem 12585 dvdsnprmd 12633 pcprod 12855 fldivp1 12857 intopsn 13386 mgm1 13389 sgrp1 13430 mnd1 13474 mnd1id 13475 grp1 13625 grp1inv 13626 eqger 13747 eqgid 13749 qusghm 13805 rngressid 13903 ring1 14008 ringressid 14012 subrgsubm 14183 resrhm2b 14198 lssex 14303 cncrng 14518 eltpsg 14699 tg1 14718 cldval 14758 cldss 14764 cldopn 14766 psmetdmdm 14983 dvef 15386 relogef 15523 zabsle1 15663 usgredg2vlem2 16006 bj-nn0suc0 16243 |
| Copyright terms: Public domain | W3C validator |