| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | GIF version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 | ⊢ (𝜓 → 𝜑) |
| mpancom.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mpancom | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 | . 2 ⊢ (𝜓 → 𝜑) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | mpancom.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3075 onsucelsucr 4545 sucunielr 4547 ordsuc 4600 peano2b 4652 xpiindim 4804 fvelrnb 5611 fliftcnv 5845 riotaprop 5904 unielxp 6241 dmtpos 6323 tpossym 6343 ercnv 6622 cnvct 6877 php5dom 6933 3xpfi 7003 recrecnq 7480 1idpr 7678 eqlei2 8140 lem1 8893 eluzfz1 10125 fzpred 10164 uznfz 10197 fz0fzdiffz0 10224 fzctr 10227 flid 10393 flqeqceilz 10429 faclbnd3 10854 bcn1 10869 isfinite4im 10903 leabs 11258 gcd0id 12173 lcmgcdlem 12272 dvdsnprmd 12320 pcprod 12542 fldivp1 12544 intopsn 13071 mgm1 13074 sgrp1 13115 mnd1 13159 mnd1id 13160 grp1 13310 grp1inv 13311 eqger 13432 eqgid 13434 qusghm 13490 rngressid 13588 ring1 13693 ringressid 13697 subrgsubm 13868 resrhm2b 13883 lssex 13988 cncrng 14203 eltpsg 14384 tg1 14403 cldval 14443 cldss 14449 cldopn 14451 psmetdmdm 14668 dvef 15071 relogef 15208 zabsle1 15348 bj-nn0suc0 15704 |
| Copyright terms: Public domain | W3C validator |