| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | GIF version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 | ⊢ (𝜓 → 𝜑) |
| mpancom.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mpancom | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 | . 2 ⊢ (𝜓 → 𝜑) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | mpancom.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3086 onsucelsucr 4561 sucunielr 4563 ordsuc 4616 peano2b 4668 xpiindim 4820 fununfun 5323 fvelrnb 5636 fliftcnv 5874 riotaprop 5933 unielxp 6270 dmtpos 6352 tpossym 6372 ercnv 6651 cnvct 6912 php5dom 6972 3xpfi 7042 recrecnq 7520 1idpr 7718 eqlei2 8180 lem1 8933 eluzfz1 10166 fzpred 10205 uznfz 10238 fz0fzdiffz0 10265 fzctr 10268 flid 10440 flqeqceilz 10476 faclbnd3 10901 bcn1 10916 isfinite4im 10950 leabs 11435 gcd0id 12350 lcmgcdlem 12449 dvdsnprmd 12497 pcprod 12719 fldivp1 12721 intopsn 13249 mgm1 13252 sgrp1 13293 mnd1 13337 mnd1id 13338 grp1 13488 grp1inv 13489 eqger 13610 eqgid 13612 qusghm 13668 rngressid 13766 ring1 13871 ringressid 13875 subrgsubm 14046 resrhm2b 14061 lssex 14166 cncrng 14381 eltpsg 14562 tg1 14581 cldval 14621 cldss 14627 cldopn 14629 psmetdmdm 14846 dvef 15249 relogef 15386 zabsle1 15526 bj-nn0suc0 16000 |
| Copyright terms: Public domain | W3C validator |