| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpancom | GIF version | ||
| Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpancom.1 | ⊢ (𝜓 → 𝜑) |
| mpancom.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mpancom | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpancom.1 | . 2 ⊢ (𝜓 → 𝜑) | |
| 2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
| 3 | mpancom.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: mpan 424 spesbc 3115 onsucelsucr 4600 sucunielr 4602 ordsuc 4655 peano2b 4707 xpiindim 4859 fununfun 5364 fvelrnb 5683 fliftcnv 5925 riotaprop 5986 unielxp 6326 dmtpos 6408 tpossym 6428 ercnv 6709 cnvct 6970 php5dom 7032 3xpfi 7103 recrecnq 7589 1idpr 7787 eqlei2 8249 lem1 9002 eluzfz1 10235 fzpred 10274 uznfz 10307 fz0fzdiffz0 10334 fzctr 10337 flid 10512 flqeqceilz 10548 faclbnd3 10973 bcn1 10988 isfinite4im 11022 leabs 11593 gcd0id 12508 lcmgcdlem 12607 dvdsnprmd 12655 pcprod 12877 fldivp1 12879 intopsn 13408 mgm1 13411 sgrp1 13452 mnd1 13496 mnd1id 13497 grp1 13647 grp1inv 13648 eqger 13769 eqgid 13771 qusghm 13827 rngressid 13925 ring1 14030 ringressid 14034 subrgsubm 14206 resrhm2b 14221 lssex 14326 cncrng 14541 eltpsg 14722 tg1 14741 cldval 14781 cldss 14787 cldopn 14789 psmetdmdm 15006 dvef 15409 relogef 15546 zabsle1 15686 usgredg2vlem2 16029 wlkprop 16048 wlkvtxiedg 16066 bj-nn0suc0 16337 |
| Copyright terms: Public domain | W3C validator |