Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpancom | GIF version |
Description: An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
Ref | Expression |
---|---|
mpancom.1 | ⊢ (𝜓 → 𝜑) |
mpancom.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Ref | Expression |
---|---|
mpancom | ⊢ (𝜓 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpancom.1 | . 2 ⊢ (𝜓 → 𝜑) | |
2 | id 19 | . 2 ⊢ (𝜓 → 𝜓) | |
3 | mpancom.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
4 | 1, 2, 3 | syl2anc 409 | 1 ⊢ (𝜓 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: mpan 421 spesbc 3036 onsucelsucr 4485 sucunielr 4487 ordsuc 4540 peano2b 4592 xpiindim 4741 fvelrnb 5534 fliftcnv 5763 riotaprop 5821 unielxp 6142 dmtpos 6224 tpossym 6244 ercnv 6522 cnvct 6775 php5dom 6829 3xpfi 6896 recrecnq 7335 1idpr 7533 eqlei2 7993 lem1 8742 eluzfz1 9966 fzpred 10005 uznfz 10038 fz0fzdiffz0 10065 fzctr 10068 flid 10219 flqeqceilz 10253 faclbnd3 10656 bcn1 10671 isfinite4im 10706 leabs 11016 gcd0id 11912 lcmgcdlem 12009 dvdsnprmd 12057 pcprod 12276 fldivp1 12278 intopsn 12598 mgm1 12601 eltpsg 12678 tg1 12699 cldval 12739 cldss 12745 cldopn 12747 psmetdmdm 12964 dvef 13328 relogef 13425 zabsle1 13540 bj-nn0suc0 13832 |
Copyright terms: Public domain | W3C validator |