Proof of Theorem swoord1
| Step | Hyp | Ref
| Expression |
| 1 | | id 19 |
. . . 4
⊢ (𝜑 → 𝜑) |
| 2 | | swoord.6 |
. . . . 5
⊢ (𝜑 → 𝐴𝑅𝐵) |
| 3 | | swoer.1 |
. . . . . . 7
⊢ 𝑅 = ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) |
| 4 | | difss 3289 |
. . . . . . 7
⊢ ((𝑋 × 𝑋) ∖ ( < ∪ ◡ < )) ⊆ (𝑋 × 𝑋) |
| 5 | 3, 4 | eqsstri 3215 |
. . . . . 6
⊢ 𝑅 ⊆ (𝑋 × 𝑋) |
| 6 | 5 | ssbri 4077 |
. . . . 5
⊢ (𝐴𝑅𝐵 → 𝐴(𝑋 × 𝑋)𝐵) |
| 7 | | df-br 4034 |
. . . . . 6
⊢ (𝐴(𝑋 × 𝑋)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
| 8 | | opelxp1 4697 |
. . . . . 6
⊢
(〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋) → 𝐴 ∈ 𝑋) |
| 9 | 7, 8 | sylbi 121 |
. . . . 5
⊢ (𝐴(𝑋 × 𝑋)𝐵 → 𝐴 ∈ 𝑋) |
| 10 | 2, 6, 9 | 3syl 17 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 11 | | swoord.5 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| 12 | | swoord.4 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| 13 | | swoer.3 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧 ∨ 𝑧 < 𝑦))) |
| 14 | 13 | swopolem 4340 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴 < 𝐶 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) |
| 15 | 1, 10, 11, 12, 14 | syl13anc 1251 |
. . 3
⊢ (𝜑 → (𝐴 < 𝐶 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) |
| 16 | 3 | brdifun 6619 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 17 | 10, 12, 16 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 18 | 2, 17 | mpbid 147 |
. . . . 5
⊢ (𝜑 → ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) |
| 19 | | orc 713 |
. . . . 5
⊢ (𝐴 < 𝐵 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) |
| 20 | 18, 19 | nsyl 629 |
. . . 4
⊢ (𝜑 → ¬ 𝐴 < 𝐵) |
| 21 | | biorf 745 |
. . . 4
⊢ (¬
𝐴 < 𝐵 → (𝐵 < 𝐶 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) |
| 22 | 20, 21 | syl 14 |
. . 3
⊢ (𝜑 → (𝐵 < 𝐶 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐶))) |
| 23 | 15, 22 | sylibrd 169 |
. 2
⊢ (𝜑 → (𝐴 < 𝐶 → 𝐵 < 𝐶)) |
| 24 | 13 | swopolem 4340 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
| 25 | 1, 12, 11, 10, 24 | syl13anc 1251 |
. . 3
⊢ (𝜑 → (𝐵 < 𝐶 → (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
| 26 | | olc 712 |
. . . . 5
⊢ (𝐵 < 𝐴 → (𝐴 < 𝐵 ∨ 𝐵 < 𝐴)) |
| 27 | 18, 26 | nsyl 629 |
. . . 4
⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| 28 | | biorf 745 |
. . . 4
⊢ (¬
𝐵 < 𝐴 → (𝐴 < 𝐶 ↔ (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
| 29 | 27, 28 | syl 14 |
. . 3
⊢ (𝜑 → (𝐴 < 𝐶 ↔ (𝐵 < 𝐴 ∨ 𝐴 < 𝐶))) |
| 30 | 25, 29 | sylibrd 169 |
. 2
⊢ (𝜑 → (𝐵 < 𝐶 → 𝐴 < 𝐶)) |
| 31 | 23, 30 | impbid 129 |
1
⊢ (𝜑 → (𝐴 < 𝐶 ↔ 𝐵 < 𝐶)) |