ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swoord1 GIF version

Theorem swoord1 6649
Description: The incomparability equivalence relation is compatible with the original order. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypotheses
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
swoer.2 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
swoer.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
swoord.4 (𝜑𝐵𝑋)
swoord.5 (𝜑𝐶𝑋)
swoord.6 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
swoord1 (𝜑 → (𝐴 < 𝐶𝐵 < 𝐶))
Distinct variable groups:   𝑥,𝑦,𝑧, <   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)

Proof of Theorem swoord1
StepHypRef Expression
1 id 19 . . . 4 (𝜑𝜑)
2 swoord.6 . . . . 5 (𝜑𝐴𝑅𝐵)
3 swoer.1 . . . . . . 7 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
4 difss 3299 . . . . . . 7 ((𝑋 × 𝑋) ∖ ( < < )) ⊆ (𝑋 × 𝑋)
53, 4eqsstri 3225 . . . . . 6 𝑅 ⊆ (𝑋 × 𝑋)
65ssbri 4088 . . . . 5 (𝐴𝑅𝐵𝐴(𝑋 × 𝑋)𝐵)
7 df-br 4045 . . . . . 6 (𝐴(𝑋 × 𝑋)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
8 opelxp1 4709 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋) → 𝐴𝑋)
97, 8sylbi 121 . . . . 5 (𝐴(𝑋 × 𝑋)𝐵𝐴𝑋)
102, 6, 93syl 17 . . . 4 (𝜑𝐴𝑋)
11 swoord.5 . . . 4 (𝜑𝐶𝑋)
12 swoord.4 . . . 4 (𝜑𝐵𝑋)
13 swoer.3 . . . . 5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
1413swopolem 4352 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐶𝑋𝐵𝑋)) → (𝐴 < 𝐶 → (𝐴 < 𝐵𝐵 < 𝐶)))
151, 10, 11, 12, 14syl13anc 1252 . . 3 (𝜑 → (𝐴 < 𝐶 → (𝐴 < 𝐵𝐵 < 𝐶)))
163brdifun 6647 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
1710, 12, 16syl2anc 411 . . . . . 6 (𝜑 → (𝐴𝑅𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
182, 17mpbid 147 . . . . 5 (𝜑 → ¬ (𝐴 < 𝐵𝐵 < 𝐴))
19 orc 714 . . . . 5 (𝐴 < 𝐵 → (𝐴 < 𝐵𝐵 < 𝐴))
2018, 19nsyl 629 . . . 4 (𝜑 → ¬ 𝐴 < 𝐵)
21 biorf 746 . . . 4 𝐴 < 𝐵 → (𝐵 < 𝐶 ↔ (𝐴 < 𝐵𝐵 < 𝐶)))
2220, 21syl 14 . . 3 (𝜑 → (𝐵 < 𝐶 ↔ (𝐴 < 𝐵𝐵 < 𝐶)))
2315, 22sylibrd 169 . 2 (𝜑 → (𝐴 < 𝐶𝐵 < 𝐶))
2413swopolem 4352 . . . 4 ((𝜑 ∧ (𝐵𝑋𝐶𝑋𝐴𝑋)) → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
251, 12, 11, 10, 24syl13anc 1252 . . 3 (𝜑 → (𝐵 < 𝐶 → (𝐵 < 𝐴𝐴 < 𝐶)))
26 olc 713 . . . . 5 (𝐵 < 𝐴 → (𝐴 < 𝐵𝐵 < 𝐴))
2718, 26nsyl 629 . . . 4 (𝜑 → ¬ 𝐵 < 𝐴)
28 biorf 746 . . . 4 𝐵 < 𝐴 → (𝐴 < 𝐶 ↔ (𝐵 < 𝐴𝐴 < 𝐶)))
2927, 28syl 14 . . 3 (𝜑 → (𝐴 < 𝐶 ↔ (𝐵 < 𝐴𝐴 < 𝐶)))
3025, 29sylibrd 169 . 2 (𝜑 → (𝐵 < 𝐶𝐴 < 𝐶))
3123, 30impbid 129 1 (𝜑 → (𝐴 < 𝐶𝐵 < 𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  w3a 981   = wceq 1373  wcel 2176  cdif 3163  cun 3164  cop 3636   class class class wbr 4044   × cxp 4673  ccnv 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator