ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  endom GIF version

Theorem endom 6914
Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.)
Assertion
Ref Expression
endom (𝐴𝐵𝐴𝐵)

Proof of Theorem endom
StepHypRef Expression
1 enssdom 6913 . 2 ≈ ⊆ ≼
21ssbri 4128 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   class class class wbr 4083  cen 6885  cdom 6886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-f1o 5325  df-en 6888  df-dom 6889
This theorem is referenced by:  domrefg  6918  endomtr  6942  domentr  6943  rex2dom  6971  nnct  10657  hashennnuni  11001  ctinf  13001  umgrislfupgrenlem  15928  umgrislfupgrdom  15929  usgrislfuspgrdom  15988
  Copyright terms: Public domain W3C validator