| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > endom | GIF version | ||
| Description: Equinumerosity implies dominance. Theorem 15 of [Suppes] p. 94. (Contributed by NM, 28-May-1998.) |
| Ref | Expression |
|---|---|
| endom | ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enssdom 6913 | . 2 ⊢ ≈ ⊆ ≼ | |
| 2 | 1 | ssbri 4128 | 1 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 class class class wbr 4083 ≈ cen 6885 ≼ cdom 6886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-f1o 5325 df-en 6888 df-dom 6889 |
| This theorem is referenced by: domrefg 6918 endomtr 6942 domentr 6943 rex2dom 6971 nnct 10657 hashennnuni 11001 ctinf 13001 umgrislfupgrenlem 15928 umgrislfupgrdom 15929 usgrislfuspgrdom 15988 |
| Copyright terms: Public domain | W3C validator |