ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfbrd GIF version

Theorem nfbrd 4026
Description: Deduction version of bound-variable hypothesis builder nfbr 4027. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbrd.2 (𝜑𝑥𝐴)
nfbrd.3 (𝜑𝑥𝑅)
nfbrd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfbrd (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)

Proof of Theorem nfbrd
StepHypRef Expression
1 df-br 3982 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 nfbrd.2 . . . 4 (𝜑𝑥𝐴)
3 nfbrd.4 . . . 4 (𝜑𝑥𝐵)
42, 3nfopd 3774 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
5 nfbrd.3 . . 3 (𝜑𝑥𝑅)
64, 5nfeld 2323 . 2 (𝜑 → Ⅎ𝑥𝐴, 𝐵⟩ ∈ 𝑅)
71, 6nfxfrd 1463 1 (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wnf 1448  wcel 2136  wnfc 2294  cop 3578   class class class wbr 3981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982
This theorem is referenced by:  nfbr  4027
  Copyright terms: Public domain W3C validator