Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfbrd | GIF version |
Description: Deduction version of bound-variable hypothesis builder nfbr 4035. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfbrd.3 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
nfbrd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfbrd | ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3990 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | nfbrd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfbrd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfopd 3782 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
5 | nfbrd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
6 | 4, 5 | nfeld 2328 | . 2 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉 ∈ 𝑅) |
7 | 1, 6 | nfxfrd 1468 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 Ⅎwnf 1453 ∈ wcel 2141 Ⅎwnfc 2299 〈cop 3586 class class class wbr 3989 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 |
This theorem is referenced by: nfbr 4035 |
Copyright terms: Public domain | W3C validator |