| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | GIF version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3231 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sstrd 3234 sylan9ss 3237 ssdifss 3334 uneqin 3455 ssindif0im 3551 undifss 3572 ssrnres 5171 relrelss 5255 fco 5491 fssres 5503 ssimaex 5697 fcof 5822 tpostpos2 6417 smores 6444 pmss12g 6830 fidcenumlemr 7130 iccsupr 10170 fimaxq 11057 fsum2d 11954 fsumabs 11984 fprod2d 12142 tgval 13303 tgvalex 13304 subrngintm 14184 subrgintm 14215 ssnei 14833 opnneiss 14840 restdis 14866 tgcnp 14891 blssexps 15111 blssex 15112 mopni3 15166 metss 15176 metcnp3 15193 tgioo 15236 cncfmptid 15279 dvmptfsum 15407 plyss 15420 |
| Copyright terms: Public domain | W3C validator |