| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | GIF version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3201 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: sstrd 3204 sylan9ss 3207 ssdifss 3304 uneqin 3425 ssindif0im 3521 undifss 3542 ssrnres 5130 relrelss 5214 fco 5447 fssres 5458 ssimaex 5647 tpostpos2 6358 smores 6385 pmss12g 6769 fidcenumlemr 7064 iccsupr 10095 fimaxq 10979 fsum2d 11790 fsumabs 11820 fprod2d 11978 tgval 13138 tgvalex 13139 subrngintm 14018 subrgintm 14049 ssnei 14667 opnneiss 14674 restdis 14700 tgcnp 14725 blssexps 14945 blssex 14946 mopni3 15000 metss 15010 metcnp3 15027 tgioo 15070 cncfmptid 15113 dvmptfsum 15241 plyss 15254 |
| Copyright terms: Public domain | W3C validator |