Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstr | GIF version |
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3154 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 123 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sstrd 3157 sylan9ss 3160 ssdifss 3257 uneqin 3378 ssindif0im 3473 undifss 3494 ssrnres 5051 relrelss 5135 fco 5361 fssres 5371 ssimaex 5555 tpostpos2 6242 smores 6269 pmss12g 6651 fidcenumlemr 6930 iccsupr 9916 fimaxq 10755 fsum2d 11391 fsumabs 11421 fprod2d 11579 tgval 12808 tgvalex 12809 ssnei 12910 opnneiss 12917 restdis 12943 tgcnp 12968 blssexps 13188 blssex 13189 mopni3 13243 metss 13253 metcnp3 13270 tgioo 13305 cncfmptid 13342 |
Copyright terms: Public domain | W3C validator |