![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstr | GIF version |
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3187 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: sstrd 3190 sylan9ss 3193 ssdifss 3290 uneqin 3411 ssindif0im 3507 undifss 3528 ssrnres 5109 relrelss 5193 fco 5420 fssres 5430 ssimaex 5619 tpostpos2 6320 smores 6347 pmss12g 6731 fidcenumlemr 7016 iccsupr 10035 fimaxq 10901 fsum2d 11581 fsumabs 11611 fprod2d 11769 tgval 12876 tgvalex 12877 subrngintm 13711 subrgintm 13742 ssnei 14330 opnneiss 14337 restdis 14363 tgcnp 14388 blssexps 14608 blssex 14609 mopni3 14663 metss 14673 metcnp3 14690 tgioo 14733 cncfmptid 14776 dvmptfsum 14904 plyss 14917 |
Copyright terms: Public domain | W3C validator |