| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sstr | GIF version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) | 
| Ref | Expression | 
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstr2 3190 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3157 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: sstrd 3193 sylan9ss 3196 ssdifss 3293 uneqin 3414 ssindif0im 3510 undifss 3531 ssrnres 5112 relrelss 5196 fco 5423 fssres 5433 ssimaex 5622 tpostpos2 6323 smores 6350 pmss12g 6734 fidcenumlemr 7021 iccsupr 10041 fimaxq 10919 fsum2d 11600 fsumabs 11630 fprod2d 11788 tgval 12933 tgvalex 12934 subrngintm 13768 subrgintm 13799 ssnei 14387 opnneiss 14394 restdis 14420 tgcnp 14445 blssexps 14665 blssex 14666 mopni3 14720 metss 14730 metcnp3 14747 tgioo 14790 cncfmptid 14833 dvmptfsum 14961 plyss 14974 | 
| Copyright terms: Public domain | W3C validator |