Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstr | GIF version |
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3149 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 123 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-in 3122 df-ss 3129 |
This theorem is referenced by: sstrd 3152 sylan9ss 3155 ssdifss 3252 uneqin 3373 ssindif0im 3468 undifss 3489 ssrnres 5046 relrelss 5130 fco 5353 fssres 5363 ssimaex 5547 tpostpos2 6233 smores 6260 pmss12g 6641 fidcenumlemr 6920 iccsupr 9902 fimaxq 10740 fsum2d 11376 fsumabs 11406 fprod2d 11564 tgval 12689 tgvalex 12690 ssnei 12791 opnneiss 12798 restdis 12824 tgcnp 12849 blssexps 13069 blssex 13070 mopni3 13124 metss 13134 metcnp3 13151 tgioo 13186 cncfmptid 13223 |
Copyright terms: Public domain | W3C validator |