Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sstr | GIF version |
Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
Ref | Expression |
---|---|
sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3154 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
2 | 1 | imp 123 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sstrd 3157 sylan9ss 3160 ssdifss 3257 uneqin 3378 ssindif0im 3474 undifss 3495 ssrnres 5053 relrelss 5137 fco 5363 fssres 5373 ssimaex 5557 tpostpos2 6244 smores 6271 pmss12g 6653 fidcenumlemr 6932 iccsupr 9923 fimaxq 10762 fsum2d 11398 fsumabs 11428 fprod2d 11586 tgval 12843 tgvalex 12844 ssnei 12945 opnneiss 12952 restdis 12978 tgcnp 13003 blssexps 13223 blssex 13224 mopni3 13278 metss 13288 metcnp3 13305 tgioo 13340 cncfmptid 13377 |
Copyright terms: Public domain | W3C validator |