| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | GIF version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sstrd 3194 sylan9ss 3197 ssdifss 3294 uneqin 3415 ssindif0im 3511 undifss 3532 ssrnres 5113 relrelss 5197 fco 5426 fssres 5436 ssimaex 5625 tpostpos2 6332 smores 6359 pmss12g 6743 fidcenumlemr 7030 iccsupr 10060 fimaxq 10938 fsum2d 11619 fsumabs 11649 fprod2d 11807 tgval 12966 tgvalex 12967 subrngintm 13846 subrgintm 13877 ssnei 14473 opnneiss 14480 restdis 14506 tgcnp 14531 blssexps 14751 blssex 14752 mopni3 14806 metss 14816 metcnp3 14833 tgioo 14876 cncfmptid 14919 dvmptfsum 15047 plyss 15060 |
| Copyright terms: Public domain | W3C validator |