| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstr | GIF version | ||
| Description: Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.) |
| Ref | Expression |
|---|---|
| sstr | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3211 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶)) | |
| 2 | 1 | imp 124 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: sstrd 3214 sylan9ss 3217 ssdifss 3314 uneqin 3435 ssindif0im 3531 undifss 3552 ssrnres 5147 relrelss 5231 fco 5465 fssres 5477 ssimaex 5668 tpostpos2 6381 smores 6408 pmss12g 6792 fidcenumlemr 7090 iccsupr 10130 fimaxq 11016 fsum2d 11912 fsumabs 11942 fprod2d 12100 tgval 13261 tgvalex 13262 subrngintm 14141 subrgintm 14172 ssnei 14790 opnneiss 14797 restdis 14823 tgcnp 14848 blssexps 15068 blssex 15069 mopni3 15123 metss 15133 metcnp3 15150 tgioo 15193 cncfmptid 15236 dvmptfsum 15364 plyss 15377 |
| Copyright terms: Public domain | W3C validator |