| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssriv | GIF version | ||
| Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssriv | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3212 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1499 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssid 3244 ssv 3246 difss 3330 ssun1 3367 inss1 3424 unssdif 3439 inssdif 3440 unssin 3443 inssun 3444 difindiss 3458 undif3ss 3465 0ss 3530 difprsnss 3806 snsspw 3842 pwprss 3884 pwtpss 3885 uniin 3908 iuniin 3975 iundif2ss 4031 iunpwss 4057 pwuni 4276 pwunss 4374 omsson 4705 limom 4706 xpsspw 4831 dmin 4931 dmrnssfld 4987 dmcoss 4994 dminss 5143 imainss 5144 dmxpss 5159 rnxpid 5163 relmptopab 6213 mapsspm 6837 pmsspw 6838 uniixp 6876 snexxph 7125 djuss 7245 pw1on 7419 enq0enq 7626 nqnq0pi 7633 nqnq0 7636 apsscn 8802 aptap 8805 sup3exmid 9112 zssre 9461 zsscn 9462 nnssz 9471 uzssz 9750 divfnzn 9824 zssq 9830 qssre 9833 rpssre 9868 ixxssxr 10104 ixxssixx 10106 iooval2 10119 ioossre 10139 rge0ssre 10181 fz1ssnn 10260 fzssuz 10269 fzssp1 10271 uzdisj 10297 fz0ssnn0 10320 nn0disj 10342 fzossfz 10370 fzouzsplit 10385 fzossnn 10398 fzo0ssnn0 10429 infssuzcldc 10463 seq3coll 11072 wrdexb 11091 fclim 11813 bitsss 12464 prmssnn 12642 4sqlem19 12940 restsspw 13290 prdsgrpd 13650 prdsinvgd 13651 ringssrng 14008 subrngintm 14184 subrgintm 14215 cnsubmlem 14550 cnsubglem 14551 znf1o 14623 mplbasss 14668 unitg 14744 cldss2 14788 blssioo 15235 tgioo 15236 limccl 15341 limcresi 15348 dvef 15409 plyssc 15421 reeff1o 15455 trlsfvalg 16102 bj-omsson 16349 |
| Copyright terms: Public domain | W3C validator |