| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssriv | GIF version | ||
| Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssriv | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3172 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1467 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssid 3204 ssv 3206 difss 3290 ssun1 3327 inss1 3384 unssdif 3399 inssdif 3400 unssin 3403 inssun 3404 difindiss 3418 undif3ss 3425 0ss 3490 difprsnss 3761 snsspw 3795 pwprss 3836 pwtpss 3837 uniin 3860 iuniin 3927 iundif2ss 3983 iunpwss 4009 pwuni 4226 pwunss 4319 omsson 4650 limom 4651 xpsspw 4776 dmin 4875 dmrnssfld 4930 dmcoss 4936 dminss 5085 imainss 5086 dmxpss 5101 rnxpid 5105 mapsspm 6750 pmsspw 6751 uniixp 6789 snexxph 7025 djuss 7145 pw1on 7311 enq0enq 7517 nqnq0pi 7524 nqnq0 7527 apsscn 8693 aptap 8696 sup3exmid 9003 zssre 9352 zsscn 9353 nnssz 9362 uzssz 9640 divfnzn 9714 zssq 9720 qssre 9723 rpssre 9758 ixxssxr 9994 ixxssixx 9996 iooval2 10009 ioossre 10029 rge0ssre 10071 fz1ssnn 10150 fzssuz 10159 fzssp1 10161 uzdisj 10187 fz0ssnn0 10210 nn0disj 10232 fzossfz 10260 fzouzsplit 10274 fzossnn 10284 fzo0ssnn0 10310 infssuzcldc 10344 seq3coll 10953 wrdexb 10966 fclim 11478 bitsss 12129 prmssnn 12307 4sqlem19 12605 restsspw 12953 prdsgrpd 13313 prdsinvgd 13314 ringssrng 13671 subrngintm 13846 subrgintm 13877 cnsubmlem 14212 cnsubglem 14213 znf1o 14285 mplbasss 14330 unitg 14406 cldss2 14450 blssioo 14897 tgioo 14898 limccl 15003 limcresi 15010 dvef 15071 plyssc 15083 reeff1o 15117 bj-omsson 15716 |
| Copyright terms: Public domain | W3C validator |