| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssriv | GIF version | ||
| Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssriv | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3182 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1477 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ⊆ wss 3167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-in 3173 df-ss 3180 |
| This theorem is referenced by: ssid 3214 ssv 3216 difss 3300 ssun1 3337 inss1 3394 unssdif 3409 inssdif 3410 unssin 3413 inssun 3414 difindiss 3428 undif3ss 3435 0ss 3500 difprsnss 3773 snsspw 3807 pwprss 3848 pwtpss 3849 uniin 3872 iuniin 3939 iundif2ss 3995 iunpwss 4021 pwuni 4240 pwunss 4334 omsson 4665 limom 4666 xpsspw 4791 dmin 4891 dmrnssfld 4946 dmcoss 4953 dminss 5102 imainss 5103 dmxpss 5118 rnxpid 5122 mapsspm 6776 pmsspw 6777 uniixp 6815 snexxph 7059 djuss 7179 pw1on 7345 enq0enq 7551 nqnq0pi 7558 nqnq0 7561 apsscn 8727 aptap 8730 sup3exmid 9037 zssre 9386 zsscn 9387 nnssz 9396 uzssz 9675 divfnzn 9749 zssq 9755 qssre 9758 rpssre 9793 ixxssxr 10029 ixxssixx 10031 iooval2 10044 ioossre 10064 rge0ssre 10106 fz1ssnn 10185 fzssuz 10194 fzssp1 10196 uzdisj 10222 fz0ssnn0 10245 nn0disj 10267 fzossfz 10295 fzouzsplit 10310 fzossnn 10320 fzo0ssnn0 10351 infssuzcldc 10385 seq3coll 10994 wrdexb 11013 fclim 11649 bitsss 12300 prmssnn 12478 4sqlem19 12776 restsspw 13125 prdsgrpd 13485 prdsinvgd 13486 ringssrng 13843 subrngintm 14018 subrgintm 14049 cnsubmlem 14384 cnsubglem 14385 znf1o 14457 mplbasss 14502 unitg 14578 cldss2 14622 blssioo 15069 tgioo 15070 limccl 15175 limcresi 15182 dvef 15243 plyssc 15255 reeff1o 15289 bj-omsson 15972 |
| Copyright terms: Public domain | W3C validator |