| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssriv | GIF version | ||
| Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ssriv | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3192 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1479 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: ssid 3224 ssv 3226 difss 3310 ssun1 3347 inss1 3404 unssdif 3419 inssdif 3420 unssin 3423 inssun 3424 difindiss 3438 undif3ss 3445 0ss 3510 difprsnss 3785 snsspw 3821 pwprss 3863 pwtpss 3864 uniin 3887 iuniin 3954 iundif2ss 4010 iunpwss 4036 pwuni 4255 pwunss 4351 omsson 4682 limom 4683 xpsspw 4808 dmin 4908 dmrnssfld 4963 dmcoss 4970 dminss 5119 imainss 5120 dmxpss 5135 rnxpid 5139 mapsspm 6799 pmsspw 6800 uniixp 6838 snexxph 7085 djuss 7205 pw1on 7379 enq0enq 7586 nqnq0pi 7593 nqnq0 7596 apsscn 8762 aptap 8765 sup3exmid 9072 zssre 9421 zsscn 9422 nnssz 9431 uzssz 9710 divfnzn 9784 zssq 9790 qssre 9793 rpssre 9828 ixxssxr 10064 ixxssixx 10066 iooval2 10079 ioossre 10099 rge0ssre 10141 fz1ssnn 10220 fzssuz 10229 fzssp1 10231 uzdisj 10257 fz0ssnn0 10280 nn0disj 10302 fzossfz 10330 fzouzsplit 10345 fzossnn 10357 fzo0ssnn0 10388 infssuzcldc 10422 seq3coll 11031 wrdexb 11050 fclim 11771 bitsss 12422 prmssnn 12600 4sqlem19 12898 restsspw 13248 prdsgrpd 13608 prdsinvgd 13609 ringssrng 13966 subrngintm 14141 subrgintm 14172 cnsubmlem 14507 cnsubglem 14508 znf1o 14580 mplbasss 14625 unitg 14701 cldss2 14745 blssioo 15192 tgioo 15193 limccl 15298 limcresi 15305 dvef 15366 plyssc 15378 reeff1o 15412 bj-omsson 16235 |
| Copyright terms: Public domain | W3C validator |