![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssriv | GIF version |
Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssriv | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3156 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1463 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2158 ⊆ wss 3141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-in 3147 df-ss 3154 |
This theorem is referenced by: ssid 3187 ssv 3189 difss 3273 ssun1 3310 inss1 3367 unssdif 3382 inssdif 3383 unssin 3386 inssun 3387 difindiss 3401 undif3ss 3408 0ss 3473 difprsnss 3742 snsspw 3776 pwprss 3817 pwtpss 3818 uniin 3841 iuniin 3908 iundif2ss 3964 iunpwss 3990 pwuni 4204 pwunss 4295 omsson 4624 limom 4625 xpsspw 4750 dmin 4847 dmrnssfld 4902 dmcoss 4908 dminss 5055 imainss 5056 dmxpss 5071 rnxpid 5075 mapsspm 6695 pmsspw 6696 uniixp 6734 snexxph 6962 djuss 7082 pw1on 7238 enq0enq 7443 nqnq0pi 7450 nqnq0 7453 apsscn 8617 aptap 8620 sup3exmid 8927 zssre 9273 zsscn 9274 nnssz 9283 uzssz 9560 divfnzn 9634 zssq 9640 qssre 9643 rpssre 9677 ixxssxr 9913 ixxssixx 9915 iooval2 9928 ioossre 9948 rge0ssre 9990 fz1ssnn 10069 fzssuz 10078 fzssp1 10080 uzdisj 10106 fz0ssnn0 10129 nn0disj 10151 fzossfz 10178 fzouzsplit 10192 fzossnn 10202 fzo0ssnn0 10228 seq3coll 10835 fclim 11315 infssuzcldc 11965 prmssnn 12125 restsspw 12715 ringssrng 13284 subrngintm 13427 subrgintm 13458 cnsubmlem 13729 cnsubglem 13730 unitg 13833 cldss2 13877 blssioo 14316 tgioo 14317 limccl 14399 limcresi 14406 dvef 14459 reeff1o 14465 bj-omsson 14985 |
Copyright terms: Public domain | W3C validator |