![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssriv | GIF version |
Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssriv | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3169 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssid 3200 ssv 3202 difss 3286 ssun1 3323 inss1 3380 unssdif 3395 inssdif 3396 unssin 3399 inssun 3400 difindiss 3414 undif3ss 3421 0ss 3486 difprsnss 3757 snsspw 3791 pwprss 3832 pwtpss 3833 uniin 3856 iuniin 3923 iundif2ss 3979 iunpwss 4005 pwuni 4222 pwunss 4315 omsson 4646 limom 4647 xpsspw 4772 dmin 4871 dmrnssfld 4926 dmcoss 4932 dminss 5081 imainss 5082 dmxpss 5097 rnxpid 5101 mapsspm 6738 pmsspw 6739 uniixp 6777 snexxph 7011 djuss 7131 pw1on 7288 enq0enq 7493 nqnq0pi 7500 nqnq0 7503 apsscn 8668 aptap 8671 sup3exmid 8978 zssre 9327 zsscn 9328 nnssz 9337 uzssz 9615 divfnzn 9689 zssq 9695 qssre 9698 rpssre 9733 ixxssxr 9969 ixxssixx 9971 iooval2 9984 ioossre 10004 rge0ssre 10046 fz1ssnn 10125 fzssuz 10134 fzssp1 10136 uzdisj 10162 fz0ssnn0 10185 nn0disj 10207 fzossfz 10235 fzouzsplit 10249 fzossnn 10259 fzo0ssnn0 10285 seq3coll 10916 wrdexb 10929 fclim 11440 infssuzcldc 12091 prmssnn 12253 4sqlem19 12550 restsspw 12863 ringssrng 13536 subrngintm 13711 subrgintm 13742 cnsubmlem 14077 cnsubglem 14078 znf1o 14150 unitg 14241 cldss2 14285 blssioo 14732 tgioo 14733 limccl 14838 limcresi 14845 dvef 14906 plyssc 14918 reeff1o 14949 bj-omsson 15524 |
Copyright terms: Public domain | W3C validator |