![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssriv | GIF version |
Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssriv | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3014 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1387 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1438 ⊆ wss 2999 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-11 1442 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-in 3005 df-ss 3012 |
This theorem is referenced by: ssid 3044 ssv 3046 difss 3126 ssun1 3163 inss1 3220 unssdif 3234 inssdif 3235 unssin 3238 inssun 3239 difindiss 3253 undif3ss 3260 0ss 3321 difprsnss 3575 snsspw 3608 pwprss 3649 pwtpss 3650 uniin 3673 iuniin 3740 iundif2ss 3795 iunpwss 3820 pwuni 4027 pwunss 4110 omsson 4427 limom 4428 xpsspw 4550 dmin 4644 dmrnssfld 4696 dmcoss 4702 dminss 4846 imainss 4847 dmxpss 4861 rnxpid 4865 mapsspm 6437 pmsspw 6438 snexxph 6657 djuun 6758 djuss 6759 enq0enq 6988 nqnq0pi 6995 nqnq0 6998 zssre 8755 zsscn 8756 nnssz 8765 uzssz 9036 divfnzn 9104 zssq 9110 qssre 9113 rpssre 9142 ixxssxr 9316 ixxssixx 9318 iooval2 9331 ioossre 9351 rge0ssre 9393 fzssuz 9476 fzssp1 9478 uzdisj 9503 fz0ssnn0 9526 nn0disj 9545 fzossfz 9572 fzouzsplit 9586 fzossnn 9596 fzo0ssnn0 9622 iseqcoll 10243 fclim 10678 infssuzcldc 11221 prmssnn 11368 bj-omsson 11812 |
Copyright terms: Public domain | W3C validator |