Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssriv | GIF version |
Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssriv | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3117 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1433 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 ⊆ wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: ssid 3148 ssv 3150 difss 3233 ssun1 3270 inss1 3327 unssdif 3342 inssdif 3343 unssin 3346 inssun 3347 difindiss 3361 undif3ss 3368 0ss 3432 difprsnss 3694 snsspw 3727 pwprss 3768 pwtpss 3769 uniin 3792 iuniin 3859 iundif2ss 3914 iunpwss 3940 pwuni 4153 pwunss 4243 omsson 4571 limom 4572 xpsspw 4697 dmin 4793 dmrnssfld 4848 dmcoss 4854 dminss 4999 imainss 5000 dmxpss 5015 rnxpid 5019 mapsspm 6624 pmsspw 6625 uniixp 6663 snexxph 6891 djuss 7008 pw1on 7155 enq0enq 7345 nqnq0pi 7352 nqnq0 7355 apsscn 8516 sup3exmid 8822 zssre 9168 zsscn 9169 nnssz 9178 uzssz 9452 divfnzn 9523 zssq 9529 qssre 9532 rpssre 9564 ixxssxr 9797 ixxssixx 9799 iooval2 9812 ioossre 9832 rge0ssre 9874 fz1ssnn 9951 fzssuz 9960 fzssp1 9962 uzdisj 9988 fz0ssnn0 10011 nn0disj 10030 fzossfz 10057 fzouzsplit 10071 fzossnn 10081 fzo0ssnn0 10107 seq3coll 10706 fclim 11184 infssuzcldc 11830 prmssnn 11980 restsspw 12332 unitg 12433 cldss2 12477 blssioo 12916 tgioo 12917 limccl 12999 limcresi 13006 dvef 13059 reeff1o 13065 bj-omsson 13508 |
Copyright terms: Public domain | W3C validator |