![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssriv | GIF version |
Description: Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssriv.1 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
ssriv | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3168 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1464 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssid 3199 ssv 3201 difss 3285 ssun1 3322 inss1 3379 unssdif 3394 inssdif 3395 unssin 3398 inssun 3399 difindiss 3413 undif3ss 3420 0ss 3485 difprsnss 3756 snsspw 3790 pwprss 3831 pwtpss 3832 uniin 3855 iuniin 3922 iundif2ss 3978 iunpwss 4004 pwuni 4221 pwunss 4314 omsson 4645 limom 4646 xpsspw 4771 dmin 4870 dmrnssfld 4925 dmcoss 4931 dminss 5080 imainss 5081 dmxpss 5096 rnxpid 5100 mapsspm 6736 pmsspw 6737 uniixp 6775 snexxph 7009 djuss 7129 pw1on 7286 enq0enq 7491 nqnq0pi 7498 nqnq0 7501 apsscn 8666 aptap 8669 sup3exmid 8976 zssre 9324 zsscn 9325 nnssz 9334 uzssz 9612 divfnzn 9686 zssq 9692 qssre 9695 rpssre 9730 ixxssxr 9966 ixxssixx 9968 iooval2 9981 ioossre 10001 rge0ssre 10043 fz1ssnn 10122 fzssuz 10131 fzssp1 10133 uzdisj 10159 fz0ssnn0 10182 nn0disj 10204 fzossfz 10232 fzouzsplit 10246 fzossnn 10256 fzo0ssnn0 10282 seq3coll 10913 wrdexb 10926 fclim 11437 infssuzcldc 12088 prmssnn 12250 4sqlem19 12547 restsspw 12860 ringssrng 13533 subrngintm 13708 subrgintm 13739 cnsubmlem 14066 cnsubglem 14067 znf1o 14139 unitg 14230 cldss2 14274 blssioo 14713 tgioo 14714 limccl 14813 limcresi 14820 dvef 14873 plyssc 14885 reeff1o 14908 bj-omsson 15454 |
Copyright terms: Public domain | W3C validator |