| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpid2 | GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2205 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 2 | 1 | 3mix2i 1173 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | eltp 3681 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
| 5 | 2, 4 | mpbir 146 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: ∨ w3o 980 = wceq 1373 ∈ wcel 2176 Vcvv 2772 {ctp 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-tp 3641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |