Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid2 GIF version

Theorem tpid2 3668
 Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid2.1 𝐵 ∈ V
Assertion
Ref Expression
tpid2 𝐵 ∈ {𝐴, 𝐵, 𝐶}

Proof of Theorem tpid2
StepHypRef Expression
1 eqid 2154 . . 3 𝐵 = 𝐵
213mix2i 1155 . 2 (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)
3 tpid2.1 . . 3 𝐵 ∈ V
43eltp 3603 . 2 (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶))
52, 4mpbir 145 1 𝐵 ∈ {𝐴, 𝐵, 𝐶}
 Colors of variables: wff set class Syntax hints:   ∨ w3o 962   = wceq 1332   ∈ wcel 2125  Vcvv 2709  {ctp 3558 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-3or 964  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563  df-tp 3564 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator