Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unss1 | GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3141 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | orim1d 782 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
3 | elun 3268 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
4 | elun 3268 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 204 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) → 𝑥 ∈ (𝐵 ∪ 𝐶))) |
6 | 5 | ssrdv 3153 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 ∈ wcel 2141 ∪ cun 3119 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: unss2 3298 unss12 3299 undif1ss 3488 eldifpw 4460 tposss 6223 dftpos4 6240 |
Copyright terms: Public domain | W3C validator |