| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undir | GIF version | ||
| Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| undir | ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | undi 3452 | . 2 ⊢ (𝐶 ∪ (𝐴 ∩ 𝐵)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) | |
| 2 | uncom 3348 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴 ∩ 𝐵)) | |
| 3 | uncom 3348 | . . 3 ⊢ (𝐴 ∪ 𝐶) = (𝐶 ∪ 𝐴) | |
| 4 | uncom 3348 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 5 | 3, 4 | ineq12i 3403 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) |
| 6 | 1, 2, 5 | 3eqtr4i 2260 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∪ cun 3195 ∩ cin 3196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |