Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undir | GIF version |
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
Ref | Expression |
---|---|
undir | ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | undi 3381 | . 2 ⊢ (𝐶 ∪ (𝐴 ∩ 𝐵)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) | |
2 | uncom 3277 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴 ∩ 𝐵)) | |
3 | uncom 3277 | . . 3 ⊢ (𝐴 ∪ 𝐶) = (𝐶 ∪ 𝐴) | |
4 | uncom 3277 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
5 | 3, 4 | ineq12i 3332 | . 2 ⊢ ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) = ((𝐶 ∪ 𝐴) ∩ (𝐶 ∪ 𝐵)) |
6 | 1, 2, 5 | 3eqtr4i 2206 | 1 ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∪ cun 3125 ∩ cin 3126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |