ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undir GIF version

Theorem undir 3387
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
undir ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))

Proof of Theorem undir
StepHypRef Expression
1 undi 3385 . 2 (𝐶 ∪ (𝐴𝐵)) = ((𝐶𝐴) ∩ (𝐶𝐵))
2 uncom 3281 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐶 ∪ (𝐴𝐵))
3 uncom 3281 . . 3 (𝐴𝐶) = (𝐶𝐴)
4 uncom 3281 . . 3 (𝐵𝐶) = (𝐶𝐵)
53, 4ineq12i 3336 . 2 ((𝐴𝐶) ∩ (𝐵𝐶)) = ((𝐶𝐴) ∩ (𝐶𝐵))
61, 2, 53eqtr4i 2208 1 ((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1353  cun 3129  cin 3130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator