ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq12i GIF version

Theorem ineq12i 3380
Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
ineq1i.1 𝐴 = 𝐵
ineq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
ineq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem ineq12i
StepHypRef Expression
1 ineq1i.1 . 2 𝐴 = 𝐵
2 ineq12i.2 . 2 𝐶 = 𝐷
3 ineq12 3377 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 426 1 (𝐴𝐶) = (𝐵𝐷)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cin 3173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180
This theorem is referenced by:  undir  3431  difindir  3436  inrab  3453  inrab2  3454  inxp  4830  resindi  4993  resindir  4994  cnvin  5109  rnin  5111  inimass  5118  funtp  5346  imainlem  5374  imain  5375  offres  6243  djuinr  7191  djuin  7192  casefun  7213  exmidfodomrlemim  7340  enq0enq  7579  explecnv  11931
  Copyright terms: Public domain W3C validator