Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ineq12i GIF version

Theorem ineq12i 3275
 Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
ineq1i.1 𝐴 = 𝐵
ineq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
ineq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem ineq12i
StepHypRef Expression
1 ineq1i.1 . 2 𝐴 = 𝐵
2 ineq12i.2 . 2 𝐶 = 𝐷
3 ineq12 3272 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
41, 2, 3mp2an 422 1 (𝐴𝐶) = (𝐵𝐷)
 Colors of variables: wff set class Syntax hints:   = wceq 1331   ∩ cin 3070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-in 3077 This theorem is referenced by:  undir  3326  difindir  3331  inrab  3348  inrab2  3349  inxp  4673  resindi  4834  resindir  4835  cnvin  4946  rnin  4948  inimass  4955  funtp  5176  imainlem  5204  imain  5205  offres  6033  djuinr  6948  djuin  6949  casefun  6970  exmidfodomrlemim  7057  enq0enq  7239  explecnv  11274
 Copyright terms: Public domain W3C validator