| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ineq12i | GIF version | ||
| Description: Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) | 
| Ref | Expression | 
|---|---|
| ineq1i.1 | ⊢ 𝐴 = 𝐵 | 
| ineq12i.2 | ⊢ 𝐶 = 𝐷 | 
| Ref | Expression | 
|---|---|
| ineq12i | ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | ineq12i.2 | . 2 ⊢ 𝐶 = 𝐷 | |
| 3 | ineq12 3359 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∩ cin 3156 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 | 
| This theorem is referenced by: undir 3413 difindir 3418 inrab 3435 inrab2 3436 inxp 4800 resindi 4961 resindir 4962 cnvin 5077 rnin 5079 inimass 5086 funtp 5311 imainlem 5339 imain 5340 offres 6192 djuinr 7129 djuin 7130 casefun 7151 exmidfodomrlemim 7268 enq0enq 7498 explecnv 11670 | 
| Copyright terms: Public domain | W3C validator |