ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneqin GIF version

Theorem uneqin 3373
Description: Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uneqin ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)

Proof of Theorem uneqin
StepHypRef Expression
1 eqimss 3196 . . . 4 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵) ⊆ (𝐴𝐵))
2 unss 3296 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) ↔ (𝐴𝐵) ⊆ (𝐴𝐵))
3 ssin 3344 . . . . . . 7 ((𝐴𝐴𝐴𝐵) ↔ 𝐴 ⊆ (𝐴𝐵))
4 sstr 3150 . . . . . . 7 ((𝐴𝐴𝐴𝐵) → 𝐴𝐵)
53, 4sylbir 134 . . . . . 6 (𝐴 ⊆ (𝐴𝐵) → 𝐴𝐵)
6 ssin 3344 . . . . . . 7 ((𝐵𝐴𝐵𝐵) ↔ 𝐵 ⊆ (𝐴𝐵))
7 simpl 108 . . . . . . 7 ((𝐵𝐴𝐵𝐵) → 𝐵𝐴)
86, 7sylbir 134 . . . . . 6 (𝐵 ⊆ (𝐴𝐵) → 𝐵𝐴)
95, 8anim12i 336 . . . . 5 ((𝐴 ⊆ (𝐴𝐵) ∧ 𝐵 ⊆ (𝐴𝐵)) → (𝐴𝐵𝐵𝐴))
102, 9sylbir 134 . . . 4 ((𝐴𝐵) ⊆ (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
111, 10syl 14 . . 3 ((𝐴𝐵) = (𝐴𝐵) → (𝐴𝐵𝐵𝐴))
12 eqss 3157 . . 3 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
1311, 12sylibr 133 . 2 ((𝐴𝐵) = (𝐴𝐵) → 𝐴 = 𝐵)
14 unidm 3265 . . . 4 (𝐴𝐴) = 𝐴
15 inidm 3331 . . . 4 (𝐴𝐴) = 𝐴
1614, 15eqtr4i 2189 . . 3 (𝐴𝐴) = (𝐴𝐴)
17 uneq2 3270 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
18 ineq2 3317 . . 3 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
1916, 17, 183eqtr3a 2223 . 2 (𝐴 = 𝐵 → (𝐴𝐵) = (𝐴𝐵))
2013, 19impbii 125 1 ((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  cun 3114  cin 3115  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator