Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version |
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 702 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | elun 3263 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | sylibr 133 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
4 | 3 | ssriv 3146 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 ∈ wcel 2136 ∪ cun 3114 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssun2 3286 ssun3 3287 elun1 3289 inabs 3354 reuun1 3404 un00 3455 undifabs 3485 undifss 3489 snsspr1 3721 snsstp1 3723 snsstp2 3724 prsstp12 3726 exmidundif 4185 sssucid 4393 unexb 4420 dmexg 4868 fvun1 5552 dftpos2 6229 tpostpos2 6233 ac6sfi 6864 caserel 7052 finomni 7104 ressxr 7942 nnssnn0 9117 un0addcl 9147 un0mulcl 9148 nn0ssxnn0 9180 fsumsplit 11348 fsum2d 11376 fsumabs 11406 fprodsplitdc 11537 fprod2d 11564 ennnfonelemss 12343 lgsdir2lem3 13571 bdunexb 13802 |
Copyright terms: Public domain | W3C validator |