| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 714 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | elun 3318 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
| 4 | 3 | ssriv 3201 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 ∈ wcel 2177 ∪ cun 3168 ⊆ wss 3170 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 |
| This theorem is referenced by: ssun2 3341 ssun3 3342 elun1 3344 inabs 3409 reuun1 3459 un00 3511 undifabs 3541 undifss 3545 snsspr1 3787 snsstp1 3789 snsstp2 3790 prsstp12 3792 exmidundif 4258 sssucid 4470 unexb 4497 dmexg 4951 fvun1 5658 dftpos2 6360 tpostpos2 6364 ac6sfi 7010 caserel 7204 finomni 7257 ressxr 8136 nnssnn0 9318 un0addcl 9348 un0mulcl 9349 nn0ssxnn0 9381 ccatclab 11073 ccatrn 11088 fsumsplit 11793 fsum2d 11821 fsumabs 11851 fprodsplitdc 11982 fprod2d 12009 ennnfonelemss 12856 prdssca 13182 prdsbas 13183 prdsplusg 13184 prdsmulr 13185 lspun 14239 cnfldbas 14397 mpocnfldadd 14398 mpocnfldmul 14400 cnfldcj 14402 cnfldtset 14403 cnfldle 14404 cnfldds 14405 psrplusgg 14515 dvmptfsum 15272 elplyr 15287 lgsdir2lem3 15582 lgsquadlem2 15630 bdunexb 15994 |
| Copyright terms: Public domain | W3C validator |