![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version |
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 713 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | elun 3300 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
4 | 3 | ssriv 3183 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 ∈ wcel 2164 ∪ cun 3151 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssun2 3323 ssun3 3324 elun1 3326 inabs 3391 reuun1 3441 un00 3493 undifabs 3523 undifss 3527 snsspr1 3766 snsstp1 3768 snsstp2 3769 prsstp12 3771 exmidundif 4235 sssucid 4446 unexb 4473 dmexg 4926 fvun1 5623 dftpos2 6314 tpostpos2 6318 ac6sfi 6954 caserel 7146 finomni 7199 ressxr 8063 nnssnn0 9243 un0addcl 9273 un0mulcl 9274 nn0ssxnn0 9306 fsumsplit 11550 fsum2d 11578 fsumabs 11608 fprodsplitdc 11739 fprod2d 11766 ennnfonelemss 12567 lspun 13898 cnfldbas 14051 cnfldadd 14052 cnfldmul 14054 psrplusgg 14162 elplyr 14886 lgsdir2lem3 15146 bdunexb 15412 |
Copyright terms: Public domain | W3C validator |