| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | elun 3305 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
| 4 | 3 | ssriv 3188 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssun2 3328 ssun3 3329 elun1 3331 inabs 3396 reuun1 3446 un00 3498 undifabs 3528 undifss 3532 snsspr1 3771 snsstp1 3773 snsstp2 3774 prsstp12 3776 exmidundif 4240 sssucid 4451 unexb 4478 dmexg 4931 fvun1 5630 dftpos2 6328 tpostpos2 6332 ac6sfi 6968 caserel 7162 finomni 7215 ressxr 8089 nnssnn0 9271 un0addcl 9301 un0mulcl 9302 nn0ssxnn0 9334 fsumsplit 11591 fsum2d 11619 fsumabs 11649 fprodsplitdc 11780 fprod2d 11807 ennnfonelemss 12654 prdssca 12979 prdsbas 12980 prdsplusg 12981 prdsmulr 12982 lspun 14036 cnfldbas 14194 mpocnfldadd 14195 mpocnfldmul 14197 cnfldcj 14199 cnfldtset 14200 cnfldle 14201 cnfldds 14202 psrplusgg 14312 dvmptfsum 15069 elplyr 15084 lgsdir2lem3 15379 lgsquadlem2 15427 bdunexb 15674 |
| Copyright terms: Public domain | W3C validator |