| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | elun 3313 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
| 4 | 3 | ssriv 3196 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 ∈ wcel 2175 ∪ cun 3163 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 |
| This theorem is referenced by: ssun2 3336 ssun3 3337 elun1 3339 inabs 3404 reuun1 3454 un00 3506 undifabs 3536 undifss 3540 snsspr1 3780 snsstp1 3782 snsstp2 3783 prsstp12 3785 exmidundif 4249 sssucid 4461 unexb 4488 dmexg 4941 fvun1 5644 dftpos2 6346 tpostpos2 6350 ac6sfi 6994 caserel 7188 finomni 7241 ressxr 8115 nnssnn0 9297 un0addcl 9327 un0mulcl 9328 nn0ssxnn0 9360 ccatclab 11048 ccatrn 11063 fsumsplit 11689 fsum2d 11717 fsumabs 11747 fprodsplitdc 11878 fprod2d 11905 ennnfonelemss 12752 prdssca 13078 prdsbas 13079 prdsplusg 13080 prdsmulr 13081 lspun 14135 cnfldbas 14293 mpocnfldadd 14294 mpocnfldmul 14296 cnfldcj 14298 cnfldtset 14299 cnfldle 14300 cnfldds 14301 psrplusgg 14411 dvmptfsum 15168 elplyr 15183 lgsdir2lem3 15478 lgsquadlem2 15526 bdunexb 15818 |
| Copyright terms: Public domain | W3C validator |