ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 GIF version

Theorem ssun1 3327
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1 𝐴 ⊆ (𝐴𝐵)

Proof of Theorem ssun1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orc 713 . . 3 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
2 elun 3305 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
31, 2sylibr 134 . 2 (𝑥𝐴𝑥 ∈ (𝐴𝐵))
43ssriv 3188 1 𝐴 ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 709  wcel 2167  cun 3155  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  ssun2  3328  ssun3  3329  elun1  3331  inabs  3396  reuun1  3446  un00  3498  undifabs  3528  undifss  3532  snsspr1  3771  snsstp1  3773  snsstp2  3774  prsstp12  3776  exmidundif  4240  sssucid  4451  unexb  4478  dmexg  4931  fvun1  5630  dftpos2  6328  tpostpos2  6332  ac6sfi  6968  caserel  7162  finomni  7215  ressxr  8087  nnssnn0  9269  un0addcl  9299  un0mulcl  9300  nn0ssxnn0  9332  fsumsplit  11589  fsum2d  11617  fsumabs  11647  fprodsplitdc  11778  fprod2d  11805  ennnfonelemss  12652  prdssca  12977  prdsbas  12978  prdsplusg  12979  prdsmulr  12980  lspun  14034  cnfldbas  14192  mpocnfldadd  14193  mpocnfldmul  14195  cnfldcj  14197  cnfldtset  14198  cnfldle  14199  cnfldds  14200  psrplusgg  14306  dvmptfsum  15045  elplyr  15060  lgsdir2lem3  15355  lgsquadlem2  15403  bdunexb  15650
  Copyright terms: Public domain W3C validator