| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 717 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | elun 3345 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
| 4 | 3 | ssriv 3228 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 ∈ wcel 2200 ∪ cun 3195 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssun2 3368 ssun3 3369 elun1 3371 inabs 3436 reuun1 3486 un00 3538 undifabs 3568 undifss 3572 snsspr1 3815 snsstp1 3817 snsstp2 3818 prsstp12 3820 exmidundif 4289 sssucid 4505 unexb 4532 dmexg 4987 fvun1 5699 dftpos2 6405 tpostpos2 6409 ac6sfi 7056 caserel 7250 finomni 7303 ressxr 8186 nnssnn0 9368 un0addcl 9398 un0mulcl 9399 nn0ssxnn0 9431 ccatclab 11124 ccatrn 11139 fsumsplit 11913 fsum2d 11941 fsumabs 11971 fprodsplitdc 12102 fprod2d 12129 ennnfonelemss 12976 prdssca 13303 prdsbas 13304 prdsplusg 13305 prdsmulr 13306 lspun 14360 cnfldbas 14518 mpocnfldadd 14519 mpocnfldmul 14521 cnfldcj 14523 cnfldtset 14524 cnfldle 14525 cnfldds 14526 psrplusgg 14636 dvmptfsum 15393 elplyr 15408 lgsdir2lem3 15703 lgsquadlem2 15751 bdunexb 16241 |
| Copyright terms: Public domain | W3C validator |