![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version |
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 713 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | elun 3301 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
4 | 3 | ssriv 3184 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 ∈ wcel 2164 ∪ cun 3152 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 |
This theorem is referenced by: ssun2 3324 ssun3 3325 elun1 3327 inabs 3392 reuun1 3442 un00 3494 undifabs 3524 undifss 3528 snsspr1 3767 snsstp1 3769 snsstp2 3770 prsstp12 3772 exmidundif 4236 sssucid 4447 unexb 4474 dmexg 4927 fvun1 5624 dftpos2 6316 tpostpos2 6320 ac6sfi 6956 caserel 7148 finomni 7201 ressxr 8065 nnssnn0 9246 un0addcl 9276 un0mulcl 9277 nn0ssxnn0 9309 fsumsplit 11553 fsum2d 11581 fsumabs 11611 fprodsplitdc 11742 fprod2d 11769 ennnfonelemss 12570 lspun 13901 cnfldbas 14059 mpocnfldadd 14060 mpocnfldmul 14062 cnfldcj 14064 cnfldtset 14065 cnfldle 14066 cnfldds 14067 psrplusgg 14173 dvmptfsum 14904 elplyr 14919 lgsdir2lem3 15187 lgsquadlem2 15235 bdunexb 15482 |
Copyright terms: Public domain | W3C validator |