| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | elun 3305 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
| 4 | 3 | ssriv 3188 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 ∈ wcel 2167 ∪ cun 3155 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssun2 3328 ssun3 3329 elun1 3331 inabs 3396 reuun1 3446 un00 3498 undifabs 3528 undifss 3532 snsspr1 3771 snsstp1 3773 snsstp2 3774 prsstp12 3776 exmidundif 4240 sssucid 4451 unexb 4478 dmexg 4931 fvun1 5628 dftpos2 6320 tpostpos2 6324 ac6sfi 6960 caserel 7154 finomni 7207 ressxr 8072 nnssnn0 9254 un0addcl 9284 un0mulcl 9285 nn0ssxnn0 9317 fsumsplit 11574 fsum2d 11602 fsumabs 11632 fprodsplitdc 11763 fprod2d 11790 ennnfonelemss 12637 lspun 13968 cnfldbas 14126 mpocnfldadd 14127 mpocnfldmul 14129 cnfldcj 14131 cnfldtset 14132 cnfldle 14133 cnfldds 14134 psrplusgg 14240 dvmptfsum 14971 elplyr 14986 lgsdir2lem3 15281 lgsquadlem2 15329 bdunexb 15576 |
| Copyright terms: Public domain | W3C validator |