ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 GIF version

Theorem ssun1 3327
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1 𝐴 ⊆ (𝐴𝐵)

Proof of Theorem ssun1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orc 713 . . 3 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
2 elun 3305 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
31, 2sylibr 134 . 2 (𝑥𝐴𝑥 ∈ (𝐴𝐵))
43ssriv 3188 1 𝐴 ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 709  wcel 2167  cun 3155  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  ssun2  3328  ssun3  3329  elun1  3331  inabs  3396  reuun1  3446  un00  3498  undifabs  3528  undifss  3532  snsspr1  3771  snsstp1  3773  snsstp2  3774  prsstp12  3776  exmidundif  4240  sssucid  4451  unexb  4478  dmexg  4931  fvun1  5628  dftpos2  6320  tpostpos2  6324  ac6sfi  6960  caserel  7154  finomni  7207  ressxr  8072  nnssnn0  9254  un0addcl  9284  un0mulcl  9285  nn0ssxnn0  9317  fsumsplit  11574  fsum2d  11602  fsumabs  11632  fprodsplitdc  11763  fprod2d  11790  ennnfonelemss  12637  lspun  13968  cnfldbas  14126  mpocnfldadd  14127  mpocnfldmul  14129  cnfldcj  14131  cnfldtset  14132  cnfldle  14133  cnfldds  14134  psrplusgg  14240  dvmptfsum  14971  elplyr  14986  lgsdir2lem3  15281  lgsquadlem2  15329  bdunexb  15576
  Copyright terms: Public domain W3C validator