| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 713 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | elun 3313 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
| 4 | 3 | ssriv 3196 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 ∈ wcel 2175 ∪ cun 3163 ⊆ wss 3165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 |
| This theorem is referenced by: ssun2 3336 ssun3 3337 elun1 3339 inabs 3404 reuun1 3454 un00 3506 undifabs 3536 undifss 3540 snsspr1 3780 snsstp1 3782 snsstp2 3783 prsstp12 3785 exmidundif 4249 sssucid 4460 unexb 4487 dmexg 4940 fvun1 5639 dftpos2 6337 tpostpos2 6341 ac6sfi 6977 caserel 7171 finomni 7224 ressxr 8098 nnssnn0 9280 un0addcl 9310 un0mulcl 9311 nn0ssxnn0 9343 ccatclab 11025 ccatrn 11040 fsumsplit 11637 fsum2d 11665 fsumabs 11695 fprodsplitdc 11826 fprod2d 11853 ennnfonelemss 12700 prdssca 13025 prdsbas 13026 prdsplusg 13027 prdsmulr 13028 lspun 14082 cnfldbas 14240 mpocnfldadd 14241 mpocnfldmul 14243 cnfldcj 14245 cnfldtset 14246 cnfldle 14247 cnfldds 14248 psrplusgg 14358 dvmptfsum 15115 elplyr 15130 lgsdir2lem3 15425 lgsquadlem2 15473 bdunexb 15720 |
| Copyright terms: Public domain | W3C validator |