Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssun1 | GIF version |
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun1 | ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 707 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | elun 3268 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | sylibr 133 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐴 ∪ 𝐵)) |
4 | 3 | ssriv 3151 | 1 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∨ wo 703 ∈ wcel 2141 ∪ cun 3119 ⊆ wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 |
This theorem is referenced by: ssun2 3291 ssun3 3292 elun1 3294 inabs 3359 reuun1 3409 un00 3461 undifabs 3491 undifss 3495 snsspr1 3728 snsstp1 3730 snsstp2 3731 prsstp12 3733 exmidundif 4192 sssucid 4400 unexb 4427 dmexg 4875 fvun1 5562 dftpos2 6240 tpostpos2 6244 ac6sfi 6876 caserel 7064 finomni 7116 ressxr 7963 nnssnn0 9138 un0addcl 9168 un0mulcl 9169 nn0ssxnn0 9201 fsumsplit 11370 fsum2d 11398 fsumabs 11428 fprodsplitdc 11559 fprod2d 11586 ennnfonelemss 12365 lgsdir2lem3 13725 bdunexb 13955 |
Copyright terms: Public domain | W3C validator |