ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 GIF version

Theorem ssun1 3326
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1 𝐴 ⊆ (𝐴𝐵)

Proof of Theorem ssun1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orc 713 . . 3 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
2 elun 3304 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
31, 2sylibr 134 . 2 (𝑥𝐴𝑥 ∈ (𝐴𝐵))
43ssriv 3187 1 𝐴 ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 709  wcel 2167  cun 3155  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  ssun2  3327  ssun3  3328  elun1  3330  inabs  3395  reuun1  3445  un00  3497  undifabs  3527  undifss  3531  snsspr1  3770  snsstp1  3772  snsstp2  3773  prsstp12  3775  exmidundif  4239  sssucid  4450  unexb  4477  dmexg  4930  fvun1  5627  dftpos2  6319  tpostpos2  6323  ac6sfi  6959  caserel  7153  finomni  7206  ressxr  8070  nnssnn0  9252  un0addcl  9282  un0mulcl  9283  nn0ssxnn0  9315  fsumsplit  11572  fsum2d  11600  fsumabs  11630  fprodsplitdc  11761  fprod2d  11788  ennnfonelemss  12627  lspun  13958  cnfldbas  14116  mpocnfldadd  14117  mpocnfldmul  14119  cnfldcj  14121  cnfldtset  14122  cnfldle  14123  cnfldds  14124  psrplusgg  14230  dvmptfsum  14961  elplyr  14976  lgsdir2lem3  15271  lgsquadlem2  15319  bdunexb  15566
  Copyright terms: Public domain W3C validator