ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 GIF version

Theorem ssun1 3285
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1 𝐴 ⊆ (𝐴𝐵)

Proof of Theorem ssun1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orc 702 . . 3 (𝑥𝐴 → (𝑥𝐴𝑥𝐵))
2 elun 3263 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
31, 2sylibr 133 . 2 (𝑥𝐴𝑥 ∈ (𝐴𝐵))
43ssriv 3146 1 𝐴 ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wo 698  wcel 2136  cun 3114  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  ssun2  3286  ssun3  3287  elun1  3289  inabs  3354  reuun1  3404  un00  3455  undifabs  3485  undifss  3489  snsspr1  3721  snsstp1  3723  snsstp2  3724  prsstp12  3726  exmidundif  4185  sssucid  4393  unexb  4420  dmexg  4868  fvun1  5552  dftpos2  6229  tpostpos2  6233  ac6sfi  6864  caserel  7052  finomni  7104  ressxr  7942  nnssnn0  9117  un0addcl  9147  un0mulcl  9148  nn0ssxnn0  9180  fsumsplit  11348  fsum2d  11376  fsumabs  11406  fprodsplitdc  11537  fprod2d  11564  ennnfonelemss  12343  lgsdir2lem3  13571  bdunexb  13802
  Copyright terms: Public domain W3C validator