![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq2i | GIF version |
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
uneq2i | ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq2 3307 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∪ cun 3151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 |
This theorem is referenced by: un4 3319 unundir 3321 difun2 3526 difdifdirss 3531 qdass 3715 qdassr 3716 unisuc 4444 iunsuc 4451 fmptap 5748 fvsnun1 5755 rdgival 6435 rdg0 6440 undifdc 6980 exmidfodomrlemim 7261 djuassen 7277 facnn 10798 fac0 10799 fsum2dlemstep 11577 fsumiun 11620 fprod2dlemstep 11765 plyun0 14882 |
Copyright terms: Public domain | W3C validator |