| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uneq2i | GIF version | ||
| Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| uneq2i | ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq2 3311 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∪ cun 3155 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 | 
| This theorem is referenced by: un4 3323 unundir 3325 difun2 3530 difdifdirss 3535 qdass 3719 qdassr 3720 unisuc 4448 iunsuc 4455 fmptap 5752 fvsnun1 5759 rdgival 6440 rdg0 6445 undifdc 6985 exmidfodomrlemim 7268 djuassen 7284 facnn 10819 fac0 10820 fsum2dlemstep 11599 fsumiun 11642 fprod2dlemstep 11787 plyun0 14972 lgsquadlem3 15320 | 
| Copyright terms: Public domain | W3C validator |