ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2i GIF version

Theorem uneq2i 3324
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
uneq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
uneq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem uneq2i
StepHypRef Expression
1 uneq1i.1 . 2 𝐴 = 𝐵
2 uneq2 3321 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170
This theorem is referenced by:  un4  3333  unundir  3335  difun2  3540  difdifdirss  3545  qdass  3730  qdassr  3731  unisuc  4460  iunsuc  4467  fmptap  5774  fvsnun1  5781  rdgival  6468  rdg0  6473  undifdc  7021  exmidfodomrlemim  7309  djuassen  7329  facnn  10872  fac0  10873  fsum2dlemstep  11745  fsumiun  11788  fprod2dlemstep  11933  plyun0  15208  lgsquadlem3  15556
  Copyright terms: Public domain W3C validator