Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > uneq2i | GIF version |
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
uneq2i | ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq2 3275 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∪ cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: un4 3287 unundir 3289 difun2 3494 difdifdirss 3499 qdass 3680 qdassr 3681 unisuc 4398 iunsuc 4405 fmptap 5686 fvsnun1 5693 rdgival 6361 rdg0 6366 undifdc 6901 exmidfodomrlemim 7178 djuassen 7194 facnn 10661 fac0 10662 fsum2dlemstep 11397 fsumiun 11440 fprod2dlemstep 11585 |
Copyright terms: Public domain | W3C validator |