ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq2i GIF version

Theorem uneq2i 3332
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
uneq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
uneq2i (𝐶𝐴) = (𝐶𝐵)

Proof of Theorem uneq2i
StepHypRef Expression
1 uneq1i.1 . 2 𝐴 = 𝐵
2 uneq2 3329 . 2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
31, 2ax-mp 5 1 (𝐶𝐴) = (𝐶𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178
This theorem is referenced by:  un4  3341  unundir  3343  difun2  3548  difdifdirss  3553  qdass  3740  qdassr  3741  unisuc  4478  iunsuc  4485  fmptap  5797  fvsnun1  5804  rdgival  6491  rdg0  6496  undifdc  7047  exmidfodomrlemim  7340  djuassen  7360  facnn  10909  fac0  10910  fsum2dlemstep  11860  fsumiun  11903  fprod2dlemstep  12048  plyun0  15323  lgsquadlem3  15671
  Copyright terms: Public domain W3C validator