| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2i | GIF version | ||
| Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| uneq2i | ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq2 3329 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: un4 3341 unundir 3343 difun2 3548 difdifdirss 3553 qdass 3740 qdassr 3741 unisuc 4478 iunsuc 4485 fmptap 5797 fvsnun1 5804 rdgival 6491 rdg0 6496 undifdc 7047 exmidfodomrlemim 7340 djuassen 7360 facnn 10909 fac0 10910 fsum2dlemstep 11860 fsumiun 11903 fprod2dlemstep 12048 plyun0 15323 lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |