| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2i | GIF version | ||
| Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| uneq2i | ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq2 3321 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: un4 3333 unundir 3335 difun2 3540 difdifdirss 3545 qdass 3730 qdassr 3731 unisuc 4460 iunsuc 4467 fmptap 5774 fvsnun1 5781 rdgival 6468 rdg0 6473 undifdc 7021 exmidfodomrlemim 7309 djuassen 7329 facnn 10872 fac0 10873 fsum2dlemstep 11745 fsumiun 11788 fprod2dlemstep 11933 plyun0 15208 lgsquadlem3 15556 |
| Copyright terms: Public domain | W3C validator |