![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uneq2i | GIF version |
Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
uneq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
uneq2i | ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | uneq2 3148 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∪ cun 2997 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-v 2621 df-un 3003 |
This theorem is referenced by: un4 3160 unundir 3162 difun2 3362 difdifdirss 3367 qdass 3539 qdassr 3540 unisuc 4240 iunsuc 4247 fmptap 5487 fvsnun1 5494 rdgival 6147 rdg0 6152 undifdc 6632 exmidfodomrlemim 6825 facnn 10131 fac0 10132 fsum2dlemstep 10824 fsumiun 10867 |
Copyright terms: Public domain | W3C validator |