| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq2i | GIF version | ||
| Description: Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| uneq2i | ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | uneq2 3320 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∪ cun 3163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 |
| This theorem is referenced by: un4 3332 unundir 3334 difun2 3539 difdifdirss 3544 qdass 3729 qdassr 3730 unisuc 4459 iunsuc 4466 fmptap 5773 fvsnun1 5780 rdgival 6467 rdg0 6472 undifdc 7020 exmidfodomrlemim 7308 djuassen 7328 facnn 10870 fac0 10871 fsum2dlemstep 11716 fsumiun 11759 fprod2dlemstep 11904 plyun0 15179 lgsquadlem3 15527 |
| Copyright terms: Public domain | W3C validator |