ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un00 GIF version

Theorem un00 3497
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3312 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
2 un0 3484 . . 3 (∅ ∪ ∅) = ∅
31, 2eqtrdi 2245 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = ∅)
4 ssun1 3326 . . . . 5 𝐴 ⊆ (𝐴𝐵)
5 sseq2 3207 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐴𝐵) ↔ 𝐴 ⊆ ∅))
64, 5mpbii 148 . . . 4 ((𝐴𝐵) = ∅ → 𝐴 ⊆ ∅)
7 ss0b 3490 . . . 4 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
86, 7sylib 122 . . 3 ((𝐴𝐵) = ∅ → 𝐴 = ∅)
9 ssun2 3327 . . . . 5 𝐵 ⊆ (𝐴𝐵)
10 sseq2 3207 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
119, 10mpbii 148 . . . 4 ((𝐴𝐵) = ∅ → 𝐵 ⊆ ∅)
12 ss0b 3490 . . . 4 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
1311, 12sylib 122 . . 3 ((𝐴𝐵) = ∅ → 𝐵 = ∅)
148, 13jca 306 . 2 ((𝐴𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))
153, 14impbii 126 1 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  cun 3155  wss 3157  c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451
This theorem is referenced by:  undisj1  3508  undisj2  3509  disjpr2  3686
  Copyright terms: Public domain W3C validator