ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un00 GIF version

Theorem un00 3493
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3308 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
2 un0 3480 . . 3 (∅ ∪ ∅) = ∅
31, 2eqtrdi 2242 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = ∅)
4 ssun1 3322 . . . . 5 𝐴 ⊆ (𝐴𝐵)
5 sseq2 3203 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐴𝐵) ↔ 𝐴 ⊆ ∅))
64, 5mpbii 148 . . . 4 ((𝐴𝐵) = ∅ → 𝐴 ⊆ ∅)
7 ss0b 3486 . . . 4 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
86, 7sylib 122 . . 3 ((𝐴𝐵) = ∅ → 𝐴 = ∅)
9 ssun2 3323 . . . . 5 𝐵 ⊆ (𝐴𝐵)
10 sseq2 3203 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
119, 10mpbii 148 . . . 4 ((𝐴𝐵) = ∅ → 𝐵 ⊆ ∅)
12 ss0b 3486 . . . 4 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
1311, 12sylib 122 . . 3 ((𝐴𝐵) = ∅ → 𝐵 = ∅)
148, 13jca 306 . 2 ((𝐴𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))
153, 14impbii 126 1 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  cun 3151  wss 3153  c0 3446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447
This theorem is referenced by:  undisj1  3504  undisj2  3505  disjpr2  3682
  Copyright terms: Public domain W3C validator