ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un00 GIF version

Theorem un00 3455
Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3271 . . 3 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = (∅ ∪ ∅))
2 un0 3442 . . 3 (∅ ∪ ∅) = ∅
31, 2eqtrdi 2215 . 2 ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴𝐵) = ∅)
4 ssun1 3285 . . . . 5 𝐴 ⊆ (𝐴𝐵)
5 sseq2 3166 . . . . 5 ((𝐴𝐵) = ∅ → (𝐴 ⊆ (𝐴𝐵) ↔ 𝐴 ⊆ ∅))
64, 5mpbii 147 . . . 4 ((𝐴𝐵) = ∅ → 𝐴 ⊆ ∅)
7 ss0b 3448 . . . 4 (𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
86, 7sylib 121 . . 3 ((𝐴𝐵) = ∅ → 𝐴 = ∅)
9 ssun2 3286 . . . . 5 𝐵 ⊆ (𝐴𝐵)
10 sseq2 3166 . . . . 5 ((𝐴𝐵) = ∅ → (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 ⊆ ∅))
119, 10mpbii 147 . . . 4 ((𝐴𝐵) = ∅ → 𝐵 ⊆ ∅)
12 ss0b 3448 . . . 4 (𝐵 ⊆ ∅ ↔ 𝐵 = ∅)
1311, 12sylib 121 . . 3 ((𝐴𝐵) = ∅ → 𝐵 = ∅)
148, 13jca 304 . 2 ((𝐴𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅))
153, 14impbii 125 1 ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴𝐵) = ∅)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1343  cun 3114  wss 3116  c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by:  undisj1  3466  undisj2  3467  disjpr2  3640
  Copyright terms: Public domain W3C validator