| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un00 | GIF version | ||
| Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.) |
| Ref | Expression |
|---|---|
| un00 | ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq12 3321 | . . 3 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = (∅ ∪ ∅)) | |
| 2 | un0 3493 | . . 3 ⊢ (∅ ∪ ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2253 | . 2 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) → (𝐴 ∪ 𝐵) = ∅) |
| 4 | ssun1 3335 | . . . . 5 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
| 5 | sseq2 3216 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐴 ⊆ ∅)) | |
| 6 | 4, 5 | mpbii 148 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 ⊆ ∅) |
| 7 | ss0b 3499 | . . . 4 ⊢ (𝐴 ⊆ ∅ ↔ 𝐴 = ∅) | |
| 8 | 6, 7 | sylib 122 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐴 = ∅) |
| 9 | ssun2 3336 | . . . . 5 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
| 10 | sseq2 3216 | . . . . 5 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐵 ⊆ (𝐴 ∪ 𝐵) ↔ 𝐵 ⊆ ∅)) | |
| 11 | 9, 10 | mpbii 148 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 ⊆ ∅) |
| 12 | ss0b 3499 | . . . 4 ⊢ (𝐵 ⊆ ∅ ↔ 𝐵 = ∅) | |
| 13 | 11, 12 | sylib 122 | . . 3 ⊢ ((𝐴 ∪ 𝐵) = ∅ → 𝐵 = ∅) |
| 14 | 8, 13 | jca 306 | . 2 ⊢ ((𝐴 ∪ 𝐵) = ∅ → (𝐴 = ∅ ∧ 𝐵 = ∅)) |
| 15 | 3, 14 | impbii 126 | 1 ⊢ ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 ∪ 𝐵) = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1372 ∪ cun 3163 ⊆ wss 3165 ∅c0 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 |
| This theorem is referenced by: undisj1 3517 undisj2 3518 disjpr2 3696 |
| Copyright terms: Public domain | W3C validator |