ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima3 GIF version

Theorem funfvima3 5872
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))

Proof of Theorem funfvima3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfvop 5746 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 ssel 3218 . . . . . 6 (𝐹𝐺 → (⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹 → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
31, 2syl5 32 . . . . 5 (𝐹𝐺 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
43imp 124 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)
5 simpr 110 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹)
6 sneq 3677 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑥} = {𝐴})
76imaeq2d 5067 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴}))
87eleq2d 2299 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
9 opeq1 3856 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, (𝐹𝐴)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
109eleq1d 2298 . . . . . . . 8 (𝑥 = 𝐴 → (⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
118, 10bibi12d 235 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
1211adantl 277 . . . . . 6 (((Fun 𝐹𝐴 ∈ dom 𝐹) ∧ 𝑥 = 𝐴) → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
13 vex 2802 . . . . . . 7 𝑥 ∈ V
14 funfvex 5643 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
15 elimasng 5095 . . . . . . 7 ((𝑥 ∈ V ∧ (𝐹𝐴) ∈ V) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
1613, 14, 15sylancr 414 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
175, 12, 16vtocld 2853 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
1817adantl 277 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
194, 18mpbird 167 . . 3 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))
2019exp32 365 . 2 (𝐹𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))))
2120impcom 125 1 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  {csn 3666  cop 3669  dom cdm 4718  cima 4721  Fun wfun 5311  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator