ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima3 GIF version

Theorem funfvima3 5796
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))

Proof of Theorem funfvima3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfvop 5674 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 ssel 3177 . . . . . 6 (𝐹𝐺 → (⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹 → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
31, 2syl5 32 . . . . 5 (𝐹𝐺 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
43imp 124 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)
5 simpr 110 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹)
6 sneq 3633 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑥} = {𝐴})
76imaeq2d 5009 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴}))
87eleq2d 2266 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
9 opeq1 3808 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, (𝐹𝐴)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
109eleq1d 2265 . . . . . . . 8 (𝑥 = 𝐴 → (⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
118, 10bibi12d 235 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
1211adantl 277 . . . . . 6 (((Fun 𝐹𝐴 ∈ dom 𝐹) ∧ 𝑥 = 𝐴) → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
13 vex 2766 . . . . . . 7 𝑥 ∈ V
14 funfvex 5575 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
15 elimasng 5037 . . . . . . 7 ((𝑥 ∈ V ∧ (𝐹𝐴) ∈ V) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
1613, 14, 15sylancr 414 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
175, 12, 16vtocld 2816 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
1817adantl 277 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
194, 18mpbird 167 . . 3 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))
2019exp32 365 . 2 (𝐹𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))))
2120impcom 125 1 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {csn 3622  cop 3625  dom cdm 4663  cima 4666  Fun wfun 5252  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator