ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima3 GIF version

Theorem funfvima3 5726
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))

Proof of Theorem funfvima3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funfvop 5605 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
2 ssel 3141 . . . . . 6 (𝐹𝐺 → (⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹 → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
31, 2syl5 32 . . . . 5 (𝐹𝐺 → ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
43imp 123 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)
5 simpr 109 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → 𝐴 ∈ dom 𝐹)
6 sneq 3592 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑥} = {𝐴})
76imaeq2d 4951 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐺 “ {𝑥}) = (𝐺 “ {𝐴}))
87eleq2d 2240 . . . . . . . 8 (𝑥 = 𝐴 → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
9 opeq1 3763 . . . . . . . . 9 (𝑥 = 𝐴 → ⟨𝑥, (𝐹𝐴)⟩ = ⟨𝐴, (𝐹𝐴)⟩)
109eleq1d 2239 . . . . . . . 8 (𝑥 = 𝐴 → (⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
118, 10bibi12d 234 . . . . . . 7 (𝑥 = 𝐴 → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
1211adantl 275 . . . . . 6 (((Fun 𝐹𝐴 ∈ dom 𝐹) ∧ 𝑥 = 𝐴) → (((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺) ↔ ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺)))
13 vex 2733 . . . . . . 7 𝑥 ∈ V
14 funfvex 5511 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → (𝐹𝐴) ∈ V)
15 elimasng 4977 . . . . . . 7 ((𝑥 ∈ V ∧ (𝐹𝐴) ∈ V) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
1613, 14, 15sylancr 412 . . . . . 6 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝑥}) ↔ ⟨𝑥, (𝐹𝐴)⟩ ∈ 𝐺))
175, 12, 16vtocld 2782 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
1817adantl 275 . . . 4 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → ((𝐹𝐴) ∈ (𝐺 “ {𝐴}) ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐺))
194, 18mpbird 166 . . 3 ((𝐹𝐺 ∧ (Fun 𝐹𝐴 ∈ dom 𝐹)) → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))
2019exp32 363 . 2 (𝐹𝐺 → (Fun 𝐹 → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴}))))
2120impcom 124 1 ((Fun 𝐹𝐹𝐺) → (𝐴 ∈ dom 𝐹 → (𝐹𝐴) ∈ (𝐺 “ {𝐴})))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  wss 3121  {csn 3581  cop 3584  dom cdm 4609  cima 4612  Fun wfun 5190  cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-fv 5204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator